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1.4. Exercises

1.4.1. For a set S of relations on Ω, denote by S∞ the union of all finite
compositions r · s · · · with r, s, . . . belonging to S. Then given s ⊆ Ω2,

(1.4.1) 〈s〉 = {1Ω(s), s, s
∗}∞.

1.4.2. Let s ⊆ Ω2. Then the points α and α′ belong to the same class of 〈s〉 if

and only if α
s∪s∗→ α′.

1.4.3. Let s ⊆ Ω2. Then rad(s) is equal to the largest equivalence relation e
on Ω(s) for which

(1.4.2) s =
⋃

∆,Γ∈Ω/e:
∆×Γ⊆s

∆× Γ.

1.4.4. Let e be an equivalence relation on Ω. Then the mapping πe induces a
surjection from the set of (partial) equivalence relations on Ω to the set of (partial)
equivalence relations on Ω/e.

1.4.5. Let e ⊆ Ω2 be an equivalence relation and s a relation on Ω/e. Then

e · π−1
e (s) · e = π−1

e (s).

In particular, e ⊆ rad(π−1
e (s)).

1.4.6. Let r and s be thin relations on Ω. Then so are the relations s∗ and r ·s.
Furthermore, if t is a thin relation on ∆, then s⊗ t is a thin relation on Ω×∆.

1.4.7. The mapping s 7→ As defines a 1-1 correspondence between the relations
on Ω and {0,1}-matrices of MatΩ.

1.4.8. Given relations r, s ⊆ Ω2,

(1) Ar∗ = (Ar)
T ,

(2) Ar∩s = Ar ◦As,
(3) Ar∪s = Ar\s +As\r +Ar∩s; in particular, Ar∪s = Ar +As if r ∩ s = ∅,
(4) |αr ∩ βs∗| = (ArAs)α,β for all α, β ∈ Ω.

1.4.9. For any relations r and s, we have Ar⊗s = Ar ⊗As.

1.4.10. For any permutations k, k′ ∈ Sym(Ω),

(1.4.3) Pkk′ = PkPk′ .

In particular, Pk−1 = (Pk )−1, and the mapping k 7→ Pk is a linear representation
of the group Sym(Ω).

1.4.11. For a relation s ⊆ Ω2 and a permutation k ∈ Sym(Ω),

(1.4.4) Ask = P−1
k AsPk.

1.4.12. For any relation s ⊆ Ω2,

(1.4.5) Asα = αs, α ∈ Ω.

1.4.13. For any group G,

〈Gleft, Gright〉 = G Inn(G).
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1.4.14. For any group G, the mapping

(1.4.6) τ : CG→ MatG(C), g 7→ Pgleft ,

is an algebra monomorphism. Moreover,

(1) τ(1) = IG and τ(G) = JG,
(2) τ(ξ−1) = τ(ξ)T for all ξ ∈ CG,
(3) τ(ξ ◦ η) = τ(ξ) ◦ τ(η) for all ξ, η ∈ CG.

1.4.15. For any group G and any set X ⊆ G,

τ(X) = As

for a uniquely determined relation s ⊆ G2. This relation is invariant with respect
to the group Gright. The mapping

(1.4.7) ρ : X 7→ s

establishes is a partial order isomorphism between the subsets of G and the binary
relations on G invariant with respect to Gright. The inverse of ρ is defined by
formula

ρ−1(s) = αs,

where α is the identity of G.

1.4.16. Let G be a group, and let ρ be the mapping from Exercise ??. Then
for any sets X,Y ⊆ G,

(1) ρ(X) = 1G if and only if X consists of the identity of G,
(2) ρ(X) = G×G if and only if X = G,
(3) ρ(X−1) = ρ(X)∗,
(4) ρ(X) ⊆ ρ(Y ) if and only if X ⊆ Y ,
(5) 〈ρ(X)〉 = ρ(〈X〉),
(6) X ≤ G if and only if e = ρ(X) is an equivalence relation and G/e = G/X,
(7) rad(ρ(X)) = ρ(rad((X)), where rad(X) = {g ∈ G : gX = Xg = X}.

1.4.17. For an abelian group G of order n, the center of Aut(G) consists of all
mappings

(1.4.8) σm : G→ G, g 7→ gm,

where m is coprime to n.

1.4.18. The identity element of the wreath product G o K is the pair (f1, 1),
where the function f1 takes any element to the identity of G. The element inverse
to (f, k) is given by (f, k)−1 = ((fk)−1, k−1).

1.4.19. Let e be a partial equivalence relation on Ω. Assume that e is invariant
with respect to a group K ≤ Sym(Ω). Then the natural action of K on Ω/e induces
the homomorphism k 7→ kΩ/e from K to Sym(Ω/e) with the image and kernel equal
to

(1.4.9) KΩ/e = {kΩ/e : k ∈ K} and Ke =
⋂

∆∈Ω/e

K{∆},

respectively.

1.4.20. Any abelian permutation group is quasiregular, and is regular if and
only if it is transitive.

1.4.21. A normal subgroup of a transitive group is 1/2-transitive.
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2.7. Exercises

In what follows, unless otherwise stated, X is a coherent configuration on Ω
and S = S(X ), F = F (X ), and E = E(X ). The notations X ′ and Ω′, S′, F ′,
and E′ have the same meaning.

2.7.1. [85] The conditions (CC1), (CC2), and (CC3) are independent.

Proof. (CC1), (CC2) ; (CC3). Let Ω = {1, 2, 3} and

s1 = Ω2\1Ω, s2 = {(1, 1)}, and s3 = {(2, 2), (3, 3)}.
If S = {s1, s2, s3}, then (Ω, S) satisfies the conditions (CC1) and (CC2) but not
the condition (CC3): indeed, (1, 2) ∈ s1, (2, 1) ∈ s1, but

|1s1 ∩ 2s∗2| = 0, |2s1 ∩ 1s∗2| = 1.

(CC2), (CC3) ; (CC1). Let Ω be a nonempty set and S = {Ω2}. Then (Ω, S)
satisfies the conditions (CC2) and (CC3) but not the condition (CC1).

(CC1), (CC3) ; (CC2). Let M = {1, 2, 3} and Ω = M2\1M . Set

B1 := {((j, i), (i, k)) : i, j, k ∈M, j 6= k},
B2 := {((i, k), (j, i)) : i, j, k ∈M, j 6= k},
B3 := {((j, i), (k, i)) : i, j, k ∈M, j 6= k},
B4 := {((i, j), (i, k)) : i, j, k ∈M, j 6= k},
B5 := {((i, j), (j, i)) : i, j ∈M, i 6= j}.

Let
s1 = 1Ω, s2 = B1 ∪B3, s3 = B2 ∪B4, and s4 = B5.

Denote {si : 1 ≤ i ≤ 4} by S. Note that S is a partition of Ω2 and (Ω, S) satisfies
the condition (CC1), but not the condition (CC2) since

s∗2 = B∗1 ∪B∗3 = B2 ∪B3 ⇒ s∗2 /∈ S.
However, (Ω, S) statisfies the condition (CC3) as the “intersection numbers” exist.
Indeed, if we denote the adjacency matrix of si by Ai for i = 1, . . . , 4, then it is
straightforward to check that

A2
2 =A1 +A3 +A4, A2A3 = A1 +A3 +A4, A2A4 = A2,

A3A2 =A1 +A2 +A4, A2
3 = A1 +A2 +A4, A3A4 = A3,

A4A2 =A3, A4A3 = A2, A2
4 = A1.

�

2.7.2. Find all coherent configurations of degree at most 4.

Proof. Coherent configurations of degree at most 2 are the discrete or the trivial
coherent configurations. Up to isomorphism, the amounts of other nontrivial and
nondiscrete coherent configurations of degree at most 4 are as follows.

Degree Homogeneouss Non-homogeneous
3 1 1
4 3 5
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The irreflexive basis graphs of the four homogeneous coherent configurations
are given in Figures (2.1) and (2.2). Here X1 is the regular scheme corresponding
to the cyclic group of order 3; X2 and X3 are respectively the regular schemes
corresponding to the cyclic group of order 4 and the Klein four-group; the scheme X4

is the scheme of an undirected 4-cycle.

•

��

•

��

• • • •

•

GG

•oo • //•

WW

• • • •

Figure 2.1. Irreflexive Basis Graphs of X1 and X4
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• • • • • • • •

Figure 2.2. Irreflexive Basis Graphs of X2 and X3

Let X be a non-homogeneous coherent configuration and F (X ) = {∆1, . . .∆m}
with m > 1. The isomorphism type of X is an m × m matrix whose (i, j)-entry
equals |S∆i,∆j

|. In this terminology, non-homogeneous coherent configurations of
degree 3 and 4 are uniquely determined (up to isomorphism) by their isomorphism
types. The isomorphism types of non-disctrete coherent configurations are given in
Table (1).

Degree Number of Fibers Cardinalities of Fibers Isomorphism Type
3 2 1,2 [ 1

1
1
2 ]

4 2 1,3 [ 1
1

1
3 ] or [ 1

1
1
2 ]

2 2,2 [ 2
2

2
2 ] or [ 2

1
1
2 ]

3 1,1,2
[

1
1
2

1
1
2

2
2
2

]
Table 1. Nonhomogeneous Cases: Degree 3 and 4

2.7.3. Denote by si the relation on the vertex set Ω of a three-dimensional cube
that is defined by the property “to be at distance i”, i = 0, 1, 2, 3. Then the pair
(Ω, S) with S = {s0, s1, s2, s3}, is a coherent configuration.

Proof. Obviously, S is a partition of Ω2. Observe that

s0 = 1Ω.

This implies that (Ω, S) satisfies condition (CC1). It also statisfies condition (CC2)
because each si is symmetric.
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Finally, we know that the rotation group R of the cube has order 24 since after
a rotation, a face of the cube can coincide with any of the six faces of the original
cube, and in each location. Now choose arbitrarily

si, sj and sk ∈ S

and any

(α, β) and (α′, β′) ∈ si.
There exists a rotation r ∈ R such that

(α, β)r = (α′, β′) and α′sj ∩ β′sk = (αsj ∩ βsk)r.

This yields that (Ω, S) satisfies condition (CC3). We are done. �

2.7.4. Let ∆,Γ ∈ F and s ∈ S∆,Γ. Then Ω−(s) = ∆ and Ω+(s) = Γ. In
particular, Ω−(r), Ω+(r), and Ω(r) are homogeneity sets of X for all r ∈ S∪.

Proof. Since s ∈ S∆,Γ, we have

Ω−(s) ⊆ ∆ and c1∆
ss∗ > 0.

The latter implies that ∆ ⊆ Ω−(s), which proves the first equality. Similarly
Ω+(s) = Γ. Thus, Ω(s) is a homogeneity set. �

2.7.5. Let M ⊂ N and T ⊆ S∪. Then {α ∈ Ω : |αs| ∈ M for all s ∈ T} is a
homogeneity set of X .

Proof. Observe that for any α ∈ Ω and any s ∈ S,

|αs| = |βs|, β ∈ ∆

where ∆ is the fiber containing α. Now if |αs| ∈ M for all s ∈ T , then the set in
question contains ∆. Hence it is a homogeneity set. �

2.7.6. Let r, s, t ∈ S and ∆ ∈ F . Then

(1) c1∆
rs 6= 0 if and only if s = r∗ and Ω−(r) = ∆,

(2) ctrs ≤ min{nr, ns∗},
(3)

∑
s∈SΓ,∆

ns = |∆| for all Γ ∈ F ,

(4)
∑
w∈S c

w
rsc

v
tu =

∑
w∈S c

v
rwc

w
su for all u, v ∈ S.

Proof. For statement (1), the sufficency is straightforward. To prove the ne-
cessity, assume c1∆

rs 6= 0. Then ∆ ⊆ Ω−(r). In fact, here we have equality since
Ω−(r) is a fiber by Exercise (2.7.5). Obviously, s = r∗.

Statement (2) follows, because for any (α, β) ∈ t we have

ctrs = |αr ∩ βs∗| ≤ min{|αr|, |βs∗|}.

For statement (3), fix α ∈ Γ. Then,⋃
s∈SΓ,∆

αs ⊆ ∆.

The equality holds as r(α, β) ∈ SΓ,∆ for any β ∈ ∆. Since |αs| = ns, we are done.
For statement (4), fix a pair (α, τ) ∈ v. Let

W := {(β, γ) : (α, β) ∈ r, (β, γ) ∈ s and (γ, τ) ∈ u}.
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Assume that (α, γ) ∈ w, then

|W | =
∑

w∈rs∩vu∗
cwrsc

v
wu =

∑
w∈S

cwrsc
v
wu.

Also,

|W | =
∑

w∈su∩r∗v
cvrwc

w
su =

∑
w∈S

cvrwc
w
su

by assuming (β, τ) ∈ w. The proof is complete. �

2.7.7. [122, p.28] Let X be a scheme and r, s, t ∈ S. Then

(1) ctrs is a multiple of nsnt GCD(nr,ns,nt)
GCD(nr,ns) GCD(ns,nt) GCD(nt,nr) .

(2) ntc
t
rs = 0 (modm), where m = LCM(nr, ns).

Proof. By formula (2.1.14),

ntc
t
rs = nsc

s∗

t∗r = nrc
r∗

st∗ .

This yields that

ns|ntctrs and nr|ntctrs.
Thus, m divides ntc

t
rs, which proves statement (2) and shows that

ns
GCD (ns, nt)

| ctrs and
nr

GCD (nr, nt)
| ctrs.

Hence, the lowest common multiple of these two numbers divides ctrs. Now state-
ment (1) follows since this multiple, as easily seen, equals

nsnt GCD(nr, ns, nt)

GCD(nr, ns) GCD(ns, nt) GCD(nt, nr)
.

�

2.7.8. Let s ∈ S∪. Then

(1) e(s) = {(α, β) ∈ Ω2 : αs = βs} belongs to E,
(2) s · s∗ ∈ E if s ∈ S and ns = 1.

Proof. Without loss of generality, we assume that s has full support.
To prove statement (1), observe that e(s) is an equivalence relation. To prove

that e(s) ∈ E, it suffices to show that for any t ∈ S,

t ∩ e(s) 6= ∅ ⇒ t ⊆ e(s).

To this end, take t ∈ S and assume that

(α, β) ∈ t ∩ e(s).

Set s := s1 ∪ · · · ∪ sm with each si ∈ S. Then for every 1 ≤ j ≤ m,

αsj = αsj ∩ βs =

m⋃
i=1

(αsj ∩ βsi).

This implies that

(2.7.1) nsj =

m∑
i=1

ctsjs∗i .
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Take an arbitrary pair (α′, β′) ∈ t. Since

|α′sj | = nsj and ctsjs∗i = |α′sj ∩ β′si|,

formula (2.7.1) yields that

|α′sj | =
m∑
i=1

|α′sj ∩ β′si| = |α′sj ∩ β′s|.

Thus,
α′sj ⊆ β′s, j = 1, · · · ,m.

Therefore, α′s ⊆ β′s. Similarly, β′s ⊆ α′s. It follows that (α′, β′) ∈ e(s) and hence
t ⊆ e(s), as required.

To prove statement (2) observe that the relation e = s · s∗ is reflexive and
symmetric. To prove transitivity, let (α, β), (β, γ) ∈ e. There exist β1, β2 such that

(α, β1) ∈ s and (β1, β) ∈ s∗; (β, β2) ∈ s and (β2, γ) ∈ s∗.
Because ns = 1, |βs| = 1 and thus β1 = β2. It follows that (α, β1) ∈ s and
(β1, γ) ∈ s∗, which yields that (α, γ) ∈ e, as wanted. �

2.7.9. Let e ∈ E. For α ∈ Ω and ∆ ∈ Ω/e, set S(α,∆) = {s ∈ S : αs∩∆ 6= ∅}.
Then

(1) for any α′ ∈ Ω, the sets S(α,∆) and S(α′,∆) are equal or disjoint,
(2) for any ∆′ ∈ Ω/e, the sets S(α,∆) and S(α,∆′) are equal or disjoint.

Proof. To prove statement (1), let s ∈ S be such that

s ∈ S(α,∆) ∩ S(α′,∆).

Then there exist β, β′ ∈ ∆ such that

(2.7.2) r(α, β) = s = r(α′, β′).

Furthermore, for any s1 ∈ S(α,∆), one can find β1 ∈ ∆ such that r(α, β1) = s1.
Since β, β1 ∈ ∆, the relation t := r(β, β1) is contained in e. Thus,

(α, β1) ∈ s1 and (β1, β) ∈ t∗ ⇒ |αs1 ∩ βt| 6= ∅.
This yields that css1t∗ 6= 0. By formula (2.7.2),

|α′s1 ∩ β′t| 6= ∅.
Since β′ ∈ ∆ and t ⊆ e, this implies that s1 ∈ S(α′,∆). Thus,

S(α,∆) ⊆ S(α′,∆).

Similarly the reverse inclusion can be proved.
To prove statement (2), assume that

s ∈ S(α,∆) ∩ S(α,∆′).

Then there exist β ∈ ∆ and β′ ∈ ∆′ such that

(2.7.3) r(α, β) = s = r(α, β′).

Furthermore, for any s1 ∈ S(α,∆), one can find β1 ∈ ∆ such that r(α, β1) = s1.
Thus,

t := r(β, β1) ⊆ e and |αs1 ∩ βt| 6= ∅.
By formula (2.7.3),

|αs1 ∩ β′t| 6= ∅.
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It follows that s1 ∈ S(α,∆′). We deduce that

S(α,∆) ⊆ S(α,∆′).

The reverse inclusion can be proved similarly. �

2.7.10. Let e ∈ E and ∆ ∈ F be such that e∆ 6= ∅. Then e · 1∆ · e is an
indecomposable component of e.

Proof. By the assumption, there exist α, β ∈ ∆ such that (α, β) ∈ e. It follows
that

(α, α) ⊆ r(α, β) · r(α, β)∗ ⊆ e.
Denote e1 := e · 1∆ · e. Then obviously,

1∆ ⊆ e1 ⊆ e.
Suppose on the contrary that there exist disjoint nonempty partial parabolics e′1
and e′2 such that

e1 = e′1 ∪ e′2.
Since 1∆ ⊆ e1, we may assume without loss of generality that 1∆ ⊆ e′1. In view of
e′1 · e′2 = ∅, we have

e1 · e′1 · e1 = (e′1 ∪ e′2) · e′1 · (e′1 ∪ e′2) = e′1.

Taking into account that e1 = e · e1 · e, we obtain

e · e′1 · e = e · (e1 · e′1 · e1) · e = e1 · e′1 · e1 = e′1.

Thus,
e1 = e · 1∆ · e ⊆ e · e′1 · e = e′1,

a contradiction. �

2.7.11. Let s ∈ S and e ∈ E. Then

(1) |αs ∩∆| does not depend on α ∈ Ω and ∆ ∈ Ω/e for which αs ∩∆ 6= ∅,
(2) if Ω(s) ⊆ Ω(e) and e · s = s · e, then nsΩ/e divides ns.

Proof. To prove statement (1), let α ∈ Ω and ∆ ∈ Ω/e be such that αs∩∆ 6= ∅.
Then

(α, β) ∈ s and ∆ = βe

for some β ∈ Ω. Denote by T the set of basis relations contained in e. Then

∆ =
⋃
r∈T

βr and αs ∩∆ =
⋃
r∈T

(αs ∩ βr).

Thus,

|αs ∩∆| =
∑
r∈T

cssr∗ .

Since the number on the right-hand side does not depend on the choice of α and ∆,
we are done.

To prove statement (2), fix a point α ∈ Ω(e). We claim that for any ∆ ∈ Ω/e,

(2.7.4) (αe, ∆) ∈ sΩ/e ⇔ αs ∩∆ 6= ∅.
To prove the implication “⇐”, assume that αs ∩∆ 6= ∅. Then there exists β ∈ ∆
such that (α, β) ∈ s. It follows that

(α, β) ∈ s ∩ (αe×∆),
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i.e., (αe,∆) ∈ sΩ/e.

To prove the implication “⇒”, assume that (αe,∆) ∈ sΩ/e. Then there exist

β ∈ αe and γ ∈ ∆ such that (β, γ) ∈ s. It follows that

(α, γ) ∈ e · s = s · e.
Consequently, one can find β′ ∈ Ω such that

(α, β′) ∈ s and (β′, γ) ∈ e.
Thus, ∆ = γe = β′e and hence β′ ∈ αs ∩∆, as required. The claim is proved.

Taking into account Ω(s) = Ω(e) and claim (2.7.4), we obtain

αs =
⋃

∆∈Ω/e

(αs ∩∆) =
⋃

(αe,∆)∈s
Ω/e

(αs ∩∆).

The number of summands on the right-hand side equals ns
Ω/e

, and any two of them

have the same cardinalities (statement (1)). Since |αs| = ns, we are done. �

2.7.12. Let X be a regular scheme. Then

(1) the closed subsets of S and the subgroups of S1 are in a 1-1 correspondence,
(2) any fission of X is semiregular.

Proof. By definition, the mapping

T 7→
⋃
t∈T

t

establishes a 1-1 correspondence between the closed subsets of S and the parabolics
of X . Since X is regular, S = S1. Thus statement (1) follows from statement (4)
of Theorem 2.1.26.

To prove statement (2), let X ′ be a fission of X . Then any s′ ∈ S(X ′) is
contained in some s ∈ S. It follows that given α ∈ Ω, we have αs′ ⊆ αs. Since X
is regular,

|αs′| ≤ |αs| = 1.

This implies that the coherent configuration X ′ is semiregular. �

2.7.13. Let X be a semiregular coherent configuration. Then

(1) |Ω| = |∆| · |F | and |S| = |F |2 · |∆| for all ∆ ∈ F ,
(2) if ∆,Γ ∈ F and s ∈ S∆,Γ, then fs ∈ Iso(X∆,XΓ),
(3) there exists a system of distinct representatives of the family {S∆,Γ}∆,Γ∈F

that is closed with respect to the composition of relations.

Proof. To prove statement (1), choose ∆ ∈ F and fix a point α ∈ ∆. For
any Γ ∈ F , the map

Γ → S∆,Γ, β 7→ r(α, β)

is a surjection since Ω+(r) = Γ for any r ∈ S∆,Γ. Because X is semiregular,
r(α, β) 6= r(α, β′) for all distinct β, β′ ∈ Γ. Hence the above map is also an
injection. It follows that

|S∆,Γ| = |Γ|.
Since this is true for any Γ ∈ F ,

|Γ| = |(S∆,Γ)∗| = |SΓ,∆| = |∆|.



2.7. EXERCISES 11

Thus,

|Ω| =
∑
Γ∈F
|Γ| = |∆| · |F |

and
|S| =

∑
Λ,Γ∈F

|SΛ,Γ| = |∆| · |F |2.

To prove statement (2), let ∆,Γ ∈ F and s ∈ S∆,Γ. Since X is semiregular, the
relation s is a matching and the mapping

fs : ∆→ Γ

is a bijection. From the definition of fs, it easily follows that

s∗ · r · s = {(αfs , βfs) : (α, β) ∈ r} = rfs ,

see also Fig. 2.3.

α

r

��

s // αfs

rfs

��

β s
// βfs

Figure 2.3. Configuration for Exercise 2.7.13.

Since r, s are thin, rfs ∈ SΓ by Lemma 2.1.25. Thus, fs is the required isomor-
phism.

To prove statement (3), let m = |F |. Denote the fibers of X by ∆1, . . . ,∆m

and set Sij = S∆i,∆j for all i, j = 1, . . . ,m. For each i, fix a basis relation

s1i ∈ S1i and s11 = 1∆1
.

Now the relations,
sij = s∗1is1j , 1 ≤ i, j ≤ m,

form a required system of representatives. Indeed, for all i, j, k,

sij · sjk = (s∗1i · s1j)(s
∗
1js1k) = s∗1i · (s1j · s∗1j)s1k = s∗1i · s11 · s1k = s∗1is1k = sik.

�

2.7.14. Let s ∈ S be such that ss∗ consists of thin relations. Then ss∗s = {s}.

Proof. Let t ∈ ss∗. By formula (2.1.9), cst∗s 6= 0 if and only if ctss∗ 6= 0. This
implies that

s ⊆ t∗ · s.
As t∗ is thin, t∗ · s is a basis relation. Hence,

s = t∗ · s.
Together with the obvious fact (ss∗)∗ = ss∗, we obtain

ss∗s =
⋃
t∈ss∗

ts =
⋃
t∈ss∗

t∗s = {s}.

�
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2.7.15. Let e be the equivalence relation on Ω such that Ω/e = F . Then e ∈ E
and e · s = s · e for all s ∈ S.

Proof. By the assumption,

e =
⋃

∆∈F
∆2 =

⋃
∆∈F

⋃
t∈S∆,∆

t.

This implies that e ∈ S∪ and hence e ∈ E.
To prove the second assertion, let s ∈ S∆,Γ with ∆,Γ ∈ F. Set u to be the

union of all basis relations in S∆,Γ. It suffices to verify that

e · s = u = s · e.

We prove the first equality. The second one can be proved similarly.
On one hand, for any (α, β) ∈ e · s, there exists γ such that (α, γ) ∈ e and

(γ, β) ∈ s. It follows that

γ ∈ Ω−(s) = ∆ and β ∈ Ω+(s) = Γ.

By the definition of e the first equality implies that α ∈ γe = ∆. This together
with the second one yield that r(α, β) ⊆ u. Thus,

e · s ⊆ u.

On the other hand, for any (α, β) ∈ u, there exists t ∈ S∆,Γ such that (α, β) ∈ t.
By the choice of s, one can find α′ ∈ ∆ satisfying (α′, β) ∈ s. Thus,

α, α′ ∈ ∆ ⇒ (α, α′) ∈ e ⇒ (α, β) ∈ e · s.

It follows that u ⊆ e · s. �

2.7.16. Let X be a cyclotomic scheme over a field F. Then AΓL(1,F) ≤ Iso(X ).

Proof. Let τ ∈ AΓL(1,F), i.e.,

τ : α 7→ a+ ασb, α ∈ F,

for some a ∈ F, b ∈ F×, and σ ∈ Aut(F). Keeping the notation cercerning cy-
clotomic schemes (page 43), let su be a basis reltaion of X with u ∈ F. For any
(α, β) ∈ su, we have α−β ∈ uM , where M is a subgroup of F× associated with X .
Obviously, Mσ = M. Then,

ατ − βτ = (ασ − βσ)b = (α− β)σb ∈ (uM)σb = uσMb = (uσb)M.

Thus, sτu ⊆ suσb. Because su and suσb have the same cardinalities, we have

sτu = suσb.

This equality holds for all su. Hence, τ ∈ Iso(X ), as required. �

2.7.17. Let K ≤ Sym(Ω) and X = Inv(K,Ω). Then

(1) S∪ equals the set of all K-invariant relations on Ω,
(2) if e ∈ E and ∆ ∈ Ω/e, then X∆ = Inv(K∆,∆),
(3) K is of odd oder if and only if X is antisymmetric,
(4) K is a p-group for a prime p if and only if |s| is a p-power for each s ∈ S.
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Proof. Every basis relation of X is a 2-orbit of K. Thus, a relation on Ω
belongs to S∪ if and only if it is a union of some 2-orbits of K if and only if it is
K-invariant. Statement (1) follows.

To prove statement (2), without loss of generality assume that e has full sup-
port. Let s∆ ∈ S∆. Obviously K∆ acts on s∆. Let (α, β), (α′, β′) ∈ s∆. Since s is
a K-orbit, there exists k ∈ K such that

(α′, β′) = (α, β)k = (αk, βk).

The parabolic e is K-invariant by statement (1). By Exercise (1.4.19), this implies
that ∆k ∈ Ω/e. However, the set ∆ ∩ ∆k is not empty (it contains α′ and β′).
Thus,

∆k = ∆

and hence k ∈ K{∆}. It follows that s∆ is a K∆-orbit. Therefore,

S∆ = Orb(K∆,∆2).

To prove statement (3), first let K be of odd order. Assume on the contrary
that X is not antisymmetric. Then there exists an irreflexive symmetric s ∈ S. It
follows that

(α, β) ∈ s ⇔ (β, α) ∈ s.
This yields that |s| is even. However, if (α, β) ∈ s, then the number

|s| = |(α, β)K | = |K : K(α,β)|

is odd, a contradiction.
Second, let X be antisymmetric. Assume on the contrary that K is of even

order. Then there exists an involution k ∈ K. Thus there exist α 6= β ∈ Ω such
that

αk = β and βk = α.

It follows that

(β, α) = (α, β)k ∈ r(α, β)k = r(α, β).

Consequently, the irreflexive basis relation r(α, β) is symmetric, a contradiction.
To prove statement (4), suppose that K is a p -group. Then the cardinality of

each 2-orbit of K is a p-power. Since the 2-orbits are exactly the basis relations
of X , the necessity follows. To prove the sufficiency, we will use the technique
developed in section 3.1 of Chapter 3.

If K is nontransitive on Ω, then the assertion follows by induction since

K ∼=
∏

∆∈Orb(K,Ω)

K∆.

So one can assume that K is transitive. Then X is a p-scheme in the sense of
Exercise (3.7.17). Suppose that X is imprimitive. Let Ω2 6= e 6= 1Ω be a parabolic
of X . Then the quotient XΩ/e is still a p-scheme by (4) of Exercise (3.7.17). By
formula (3.1.8), we have

XΩ/e = Inv(KΩ/e,Ω/e).

Hence, KΩ/e is a p-group by induction.
Let ∆ ∈ Ω/e. For any t ∈ S∆, there exists s ∈ S such that t = s∆. Then |t|

divides |s| (Proposition 2.1.18). Thus, |t| is a p-power. It follows that X∆ is also a
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p-scheme. Since X∆ = Inv(K∆,∆) (statement (2)), K∆ is a p-group by induction.
Note that K is isomorphic to a subgroup of

KΩ/e oK∆.

Hence, K is a p-group as both KΩ/e and K∆ are p-groups.
If the scheme is primitive, by statement (2) of Exercise (3.7.17), S = S1. It

follows that the scheme is regular. Thus, |K| = |1Ω| is a p-power. �

2.7.18. Let X be a schurian coherent configuration. Then the group Iso(X )
equals the normalizer of Aut(X ) in Sym(Ω).

Proof. Set

N = NSym(Ω)(K),

where K = Aut(X ). Since X is schurian, every basis relation of X is a 2-orbit of
K. Therefore for any g ∈ N , s ∈ S, and (α, β) ∈ s, we have

sg = (α, β)Kg = (α, β)gK = r(αg, βg).

It follows that g ∈ Iso(X ) and hence N ⊆ Iso(X ).
Conversely, for any h ∈ Iso(X ), k ∈ K, and s ∈ S,

sh
−1kh = (sh

−1

)kh = (sh
−1

)h = s,

which yields that h−1kh ∈ K. Thus, h ∈ N . Therefore, Iso(X ) ⊆ N . �

2.7.19. Let X be a quasiregular coherent configuration, i.e., every its homoge-
neous component is regular. Then the group Aut(X ) is abelian if each homogeneous
component of X is commutative. The converse is true if X is schurian.

Proof. For a coherent configuration X , denote Aut(X ) by K. Since each s ∈ S
is K-invariant, each ∆ ∈ F is also K-invariant. It follows that

K∆ ≤ Aut(X∆).

Then there is a group monomorphism:

ψ : K →
∏

∆∈F
Aut(X∆).

Now assume further that X is quasiregular. Let ∆ ∈ F . Then X∆ is regular.
It follows that S(X∆) is a group isomorphic to Aut(X∆). If X∆ is commutative,
then Aut(X∆) is abelian. If this is true for all ∆ ∈ F , then K ∼= Im(ψ) is abelian.

Conversely, suppose that X is schurian and K is abelian. Choose ∆ ∈ F
arbitrarily. Obviously,

(2.7.5) K∆ ≤ Aut(X∆).

Since X∆ is regular, Aut(X∆) is regular on ∆. As X is schurian, 1∆ is a K-orbit.
This yields that K∆ is transitive on ∆. These facts together with formula (2.7.5)
show that Aut(X∆) is abelain. Hence, X∆ is commutative. �

2.7.20. [85] In the notation of Theorem 2.2.7, assume that the group K is
transitive and H is a point stabilizer of K. Then for any r, s, t ∈ S, the number
|H|ctrs is equal to the number of occurrences of the double coset Dt∗ in the the
product Dr∗Ds∗ .
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Proof. Without loss of generality, we may assume that

Ω = {Hk : k ∈ K}
and K acts on Ω by right multiplications. Let

(H,Hx) ∈ t, (H,Hy) ∈ r, and (H,Hz) ∈ s.
Then

Dt = HxH, Dr = HyH, and Ds = HzH,

and
Dt∗ = Hx−1H, Dr∗ = Hy−1H, and Ds∗ = Hz−1H.

Observe that

ctrs = |{Hu ∈ Ω : (H,Hu) ∈ r, (Hu,Hx) ∈ s}|.
Furthermore,

(H,Hu) ∈ r ⇔ Hu ⊆ Dr ⇔ HuH = Dr,

and

(Hu,Hx) ∈ s ⇔ (H,Hux−1) ∈ s∗ ⇔ Hux−1H = Ds∗ ⇔ HuH ⊆ Ds∗Dt.

Thus,
|H|ctrs = |{(g, h) ∈ Ds∗ ×Dt : y−1 = gh}|.

Since the right-hand side equals the number of occurences of the double coset Dt∗

in the product Dr∗Ds∗ , we are done. �

2.7.21. Let e ∈ E and ∆ ∈ Ω/e. Then

(1) the mapping S∆ → S, s∆ 7→ s is an injection; it induces injections from
F (X∆) and E(X∆) into F and E, respectively,

(2) the coherent configuration X∆ is schurian whenever so is X ,
(3) the restriction of a schurian coherent configuration to any homogeneity

set is schurian.

Proof. To prove statement (1), denote the mapping s∆ 7→ s by ϕ. Clearly for
s∆, t∆ ∈ S∆,

s∆ = t∆ ⇔ ϕ(s∆) = ϕ(t∆).

This implies that ϕ is an injection. The induced injection from S∪∆ to S∪ is also
denoted by ϕ. It is easily seen that ϕ maps reflexive relations to reflexive relations.
Hence, one can extend ϕ to an injection from F (X∆)∪ to F∪ such that

(2.7.6) ϕ(1Γ) = 1Γϕ , Γ ∈ F (X∆)∪.

In addition, for any s ∈ S(X∆)∪, it is easy to see that

(Ω±(s))ϕ = Ω±(ϕ(s)).

Now let e ∈ E(X∆). It suffices to verify that ϕ(e) belongs to E. By for-
mula (2.7.6), we obtain

(Ω(e))ϕ = Ω−(ϕ(e)) = Ω+(ϕ(e)).

This together with the obvious fact that ϕ(s∗) = ϕ(s)∗ yield that ϕ(e) is a reflexive
and symmetric relation on Ω(ϕ(e)). Since ϕ preserves the composition of relations,
for any r, s ∈ S(X∆)

r · s ⊆ e ⇒ ϕ(r) · ϕ(s) ⊆ ϕ(e).
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Thus, ϕ(e) is transitive on Ω(ϕ(e)). This shows that ϕ(e) ∈ E.

Statement (2) follows immediately from statement (2) of Exercise (2.7.17).
Statement (3) is a special case of statement (2): for a homogeneity set ∆, take
e = ∆2. �

2.7.22. For any 2-orbit s of the group Sym(Ω) acting on Ωm (m ≥ 1), there
exists an equivalence relation e on {1, . . . , 2m} such that

s = {(α, β) ∈ Ωm × Ωm : (α · β)i = (α · β)j ⇔ (i, j) ∈ e}.

Conversely, any such s is a 2-orbit of Sym(Ω) acting on Ωm.

Proof. Let s be a 2-orbit of Sym(Ω) on Ωm. Fix (α, β) ∈ s. Then

s = {(αk, βk) : k ∈ Sym(Ω)}.

Observe that for any 1 ≤ i, j ≤ 2m and any k ∈ Sym(Ω)

(2.7.7) (α · β)i = (α · β)j ⇔ (αk · βk)i = (αk · βk)j .

Let e be the relation on {1, . . . , 2m} defined as follows:

(i, j) ∈ e ⇔ (α · β)i = (α · β)j .

It is easily seen that e is an equivalence relation on {1, . . . , 2m}. Furthermore, by
statement (2.7.7) we have

(2.7.8) s ⊆ {(γ, τ) ∈ Ωm × Ωm : (γ · τ)i = (γ · τ)j ⇔ (i, j) ∈ e}.

To prove the reverse inclusion, let (γ, τ) be an arbitrary element in the set on
the right-hand side in (2.7.8). Set

n := |{(γ · τ)i : 1 ≤ i ≤ 2m}|.

Note that for any 1 ≤ i, j ≤ 2m,

(2.7.9) (γ · τ)i = (γ · τ)j ⇔ (α · β)i = (α · β)j .

It follows that there exist indices 1 ≤ i1 < . . . < in ≤ 2m such that

u 6= u′ ⇒ (γ · τ)iu 6= (γ · τ)iu′ .

Note that n ≤ |Ω|. Therefore Sym(Ω) is n-transitive on Ω. Thus, there exists
k ∈ Sym(Ω) such that

(2.7.10) (γ · τ)iu = ((α · β)iu)k, u = 1, . . . , n.

For any 1 ≤ l ≤ 2m, there exists 1 ≤ u ≤ n such that (γ · τ)l = (γ · τ)iu . By
formulas (2.7.9) and (2.7.10), we have

(γ · τ)l = (γ · τ)iu = ((α · β)iu)k = ((α · β)l)
k.

It follows that (γ, τ) = (α, β)k ∈ s. We are done. �

2.7.23. Let K ≤ Sym(Ω). Then

(1) K(1) equals the direct product of Sym(∆), ∆ ∈ Orb(K,Ω),
(2) if K is 2-transitive, then K(2) = Sym(Ω),
(3) (K(a))(b) = K(m), where m = min{a, b},
(4) if L ≤ K, then L(m) ≤ K(m).
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Proof. For statement (1), denote the direct product of Sym(∆), ∆ ∈ Orb(K,Ω)
by L. Obviously Orb(L,Ω) = Orb(K,Ω). This implies that L and K are 1-
equivalent. Hence,

L ≤ K(1).

The reverse inclusion holds because

K(1) ≤
∏

∆∈Orb(K,Ω)

(K(1))∆ ≤ L.

For statement (2), since K is 2-transitive, Inv(K) = TΩ. This implies that

K(2) = Aut(Inv(K)) = Aut(TΩ) = Sym(Ω).

For statement (3), first assume b ≤ a. Fix a point β ∈ Ω. Then, for any
(α1, . . . , αb) ∈ Ωb, we have (α1, . . . , αb, β, . . . , β) ∈ Ωa. Since K and K(a) are
a-equivalent,

(α1, . . . , αb, β, . . . , β)K = (α1, . . . , αb, β, . . . , β)K
(a)

.

This yields that

(α1, . . . , αb)
K = (α1, . . . , αb)

K(a)

.

It follows that K and K(a) are b-equivalent. Since K and K(b) are b-equivalent, so
are K(a) and K(b). In other words,

Orb(K(a),Ωb) = Orb(K(b),Ωb).

Thus,

(K(a))(b) = Aut(Orb(K(a),Ωb)) = Aut(Orb(K(b),Ωb)) = K(b),

which completes the proof of the case in question. In particular,

K(b) = (K(a))(b) ≥ K(a)

and

(2.7.11) Aut(Orb(K,Ωb)) ≥ Aut(Orb(K,Ωa)).

Next assume b > a. Applying formula (2.7.11) to K = K(a) and with a and b
interchanged, we obtain

(K(a))(b) = Aut(Orb(K(a),Ωb)) ≤ Aut(Orb(K(a),Ωa)) = K(a).

Since K(a) is contained in its b-closure, (K(a))(b) = K(a), which completes the
proof.

For statement (4), by the Galois correspondence one can see that

Orb(L,Ωm) ⊇ Orb(K,Ωm) ⇒ Aut(Orb(L,Ωm)) ≤ Aut(Orb(K,Ωm)),

i.e., L(m) ≤ K(m). �

2.7.24. Given a matrix A ∈ MatΩ, set

(2.7.12) e(A) = {(α, β) ∈ Ω2 : Aα = Aβ 6= 0}.

Then e(A) ∈ E, whenever A ∈ Adj(X ).
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Proof. Let
∆ =: {α ∈ Ω : Aα 6= 0}.

It is straightforward to see that e(A) is an equivalence relation on ∆. It suffices to
show that e(A) belongs to S∪.

There exists T ⊆ S∪ such that

A =
∑
t∈T

atAt,

where each at 6= 0 and at 6= at′ for any t 6= t′ ∈ T . For any point α ∈ Ω,
Exercise (1.4.5) implies that

(2.7.13) Aα =
∑
t∈T

at(Atα) =
∑
t∈T

at αt
∗ .

It follows that α ∈ ∆ if and only if αt∗ 6= ∅ for at least one t ∈ T . Thus,

∆ =
⋃
t∈T

Ω−(t∗) ∈ F∪.

Let e(s) be defined as in Exercise (2.7.8) for s ∈ S∪. Since the set {αt∗ : t ∈ T} in
(2.7.13) consists of pariwise orthogonal {0,1}-vectors, we have

e(A) = (
⋂
t∈T

e(t)) ∩∆2.

However, e(t) ∈ E for each t ∈ T by Exercise (2.7.8). Thus, e(A) ∈ S∪, as required.
�

2.7.25. Let m ≥ 2 be an integer, r ∈ S, and s1, . . . , sm−1 ∈ S∪. Then the
number pr(α, β; s1, . . . , sm−1) of all tuples (α1, . . . , αm) ∈ Ωm such that

(α1, αm) = (α, β) and r(αi, αi+1) = si, i = 1, . . . ,m− 1,

does not depend on the choice of (α, β) ∈ r.

Proof. Since Adj(X ) is a coherent algebra, there exists a nonnegative integer a
such that

(As1 · . . . ·Asm−1) ◦Ar = aAr.

According to the rule of matrix multiplication (see also statement (4) of Exer-
cise (1.4.8)), one can easily check that for each (α, β) ∈ r,

a = pr(α, β; s1, . . . , sm−1).

Since a does not depend on the choice of (α, β) ∈ r, we are done. �

2.7.26. The scalar product on the adjacency algebra Adj(X ) defined by the
formula

〈
∑
s∈S

csAs,
∑
s∈S

bsAs〉 =
1

|Ω|
∑
s∈S

ccbs|s|

is associative, i.e., 〈AB,C〉 = 〈B,A∗C〉 for all A,B,C ∈ Adj(X ).

Proof. Since the scalar product is linear in each arguement, without loss of
generality, one can assume that

A = Ar, B = As, and C = At,

where r, s, t ∈ S.
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On one hand,

〈AB,C〉 = 〈
∑
u∈S

cursAu, At〉 =
1

|Ω|
|t|ctrs.

On the other hand,

〈B,A∗C〉 = 〈As,
∑
v∈S

cvr∗tAv〉 =
1

|Ω|
|s|csr∗t.

Note that |t| = |t∗| and ct
∗

s∗r∗ = ctrs by formula (2.1.3). These equalities together
with formula (2.1.9) yield that

|s|csr∗t = |t∗|ct
∗

s∗r∗ = |t|ctrs.

We are done. �

2.7.27. [101,Lemma 2.3] Let X be a shceme and r, s ∈ S#. Then rr∗∩ ss∗ =
{1Ω} if and only if ctr∗s ≤ 1 for all t ∈ S.

Proof. The scalar product defined in Exercise (2.7.26) is applied here. Observe
that

〈ArAr∗ , AsAs∗〉 =
1

|Ω|
∑

u∈rr∗∩ss∗
curr∗c

u
ss∗ |u|.

Thus,

(2.7.14) rr∗ ∩ ss∗ = {1Ω} ⇔ 〈ArAr∗ , AsAs∗〉 =
1

|Ω|
c1Ω
rr∗c

1Ω
ss∗ |1Ω| = nrns.

Furthermore,

〈ArAr∗ , AsAs∗〉 = 〈Ar∗As, Ar∗As〉

=
1

|Ω|
∑
t∈S

(ctr∗s)
2|t|

≥ 1

|Ω|
∑
t∈S

ctr∗s|t|

=
1

|Ω|
∑
t∈S

ctr∗s|Ω|nt

=
∑
t∈S

ctr∗snt = nr∗ns = nrns.

Here the equality is attained if and only if

ctr∗s ≤ 1, for all t ∈ S.

Together with formula (2.7.14), these complete the proof. �

2.7.28. Let s be a relation of X . Then so is {(α, β) ∈ Ω2 : α
s→ β}.

Proof. By using the notation of Exercise (2.7.25), one can see that, for any
pair (α, β) ∈ Ω2,

pt(α, β; s, . . . , s︸ ︷︷ ︸
m−1

) > 0 for some m ≥ 2 ⇔ α
s→ β.
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To prove that

s′ := {(α, β) ∈ Ω2 : α
s→ β}

is a relation of X , let t be a basis relation intersecting s′. It suffices to verify that
t ⊆ s′. To this end, take an arbitrary pair (α, β) ∈ t∩s′. Then pt(α, β; s, . . . , s) > 0.
Since this is true for any (α′, β′) ∈ t (Exercise (2.7.25)), we obtain (α′, β′) ∈ s′, i.e.,
t ⊆ s′. �

2.7.29. Let ϕ ∈ Isoalg(X ,X ′) and r, s ∈ S∪. Then

(1) ϕ(r ∪ s) = ϕ(r) ∪ ϕ(s) and ϕ(r ∩ s) = ϕ(r) ∩ ϕ(s),
(2) ϕ(〈s〉) = 〈ϕ(s)〉 and ϕ(rad(s)) = rad(ϕ(s)).

Proof. To prove statement (1), decompose r and s respectively as unions of
basis relations as follows:

r = r1 ∪ . . . ∪ rk and s = s1 ∪ . . . ∪ sl,
where k and l are nonnegative integers. By formula (2.3.16) on page 67, we obtain

ϕ(r ∪ s) =ϕ(r1 ∪ . . . ∪ rk ∪ s1 ∪ . . . ∪ sl)
=(ϕ(r1) ∪ . . . ∪ ϕ(rk)) ∪ (ϕ(s1) ∪ . . . ∪ ϕ(sl))

=ϕ(r) ∪ ϕ(s).

Similarly, one can prove that ϕ(r ∩ s) = ϕ(r) ∩ ϕ(s).
To prove statement (2), note that by Exercise (1.4.1),

〈s〉 = {1Ω(s), s, s
∗}∞.

In addition, statement (2) of Corollary 2.3.23 and statement (4) of Proposition
2.3.18 respectively imply that

ϕ(1Ω(s)) = 1Ω(ϕ(s)) and ϕ(s∗) = ϕ(s)∗.

Together with statement (2) of Proposition 2.3.18, this yields that

(2.7.15) ϕ(〈s〉) = {1Ω(ϕ(s)), ϕ(s), ϕ(s)∗}∞ = 〈ϕ(s)〉.
To prove the second equality of statement (2), note that by the first part of

Propostion 2.3.25, ϕ(rad(s)) ∈ E′. Since

rad(s) · s = s = s · rad(s),

by statement (2) of Proposition 2.3.18, we obtain

ϕ(rad(s)) · ϕ(s) = ϕ(s) = ϕ(s) · ϕ(rad(s)).

This implies that

ϕ(rad(s)) ⊆ rad(ϕ(s)).

This formula for ϕ = ϕ−1 and s = ϕ(s) proves the reverse inclusion. �

2.7.30. Every algebraic isomorphism from X onto X ′ induces a lattice isomor-
phism from E to E′.

Proof. By the first part of Propostion 2.3.25, ϕ induces a bijection from E
to E′. To prove that ϕ induces a lattice isomorphism, we use the partial orders of
E and E′ defined by inclusion of relations (in both cases, the smallest elements are
the empty sets and the largest elements are respectively Ω2 and Ω′2). By statement
(1) of Proposition 2.3.18, ϕ respects these partial orders.
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If the join and meet are defined respectively by equivalence closure and inter-
section, i.e.,

e1 ∨ e2 = 〈e1 ∪ e2〉 and e1 ∧ e2 = e1 ∩ e2,

then by Exercise (2.7.29), for any e1, e2 ∈ E, we have

ϕ(e1 ∨ e2) = ϕ(〈e1 ∪ e2〉) = 〈ϕ(e1 ∪ e2)〉 = 〈ϕ(e1) ∪ ϕ(e2)〉 = ϕ(e1) ∨ ϕ(e2)

and
ϕ(e1 ∧ e2) = ϕ(e1 ∩ e2) = ϕ(e1) ∧ ϕ(e2).

Consequently, ϕ induces a lattice isomorphism. �

2.7.31. Let ϕ ∈ Isoalg(X ,X ′), e an indecomposable partial parabolic of X ,
∆ ∈ Ω/e, and e′ = ϕ(e). Then for any ∆′ ∈ Ω′/e′, the bijection

ϕ∆,∆′ : S∆ → S′∆′ , s∆ 7→ ϕ(s)∆′

is an algebraic isomorphism from X∆ onto X ′∆′ .

Proof. For any s ∈ S∪, set s′ := ϕ(s). By the assumption and statement (2) of
Proposition 2.3.25, e′ is indecomposable. Take an arbitrary class ∆′ ∈ Ω′/e′. Then
by statement (1) of Theorem 2.1.22, for any s ∈ S,

(2.7.16) s∆ 6= ∅ ⇔ s ⊆ e ⇔ s′ ⊆ e′ ⇔ s′∆′ 6= ∅.
Thus, for any basis relations r, s, t ⊆ e, formula (2.1.16) shows that

(2.7.17) ct∆r∆s∆ = ctrs = ct
′

r′s′ = c
t′
∆′
r′
∆′s
′
∆′
.

Formulas (2.7.16) and (2.7.17) prove that the mapping s∆ 7→ s′∆′ is an algebraic
isomorphism from X∆ to X ′∆′ . �

2.7.32. If one of two algebraically isomorphic coherent configurations is half-
homogeneous (respectively, homogeneous, equivalenced, regular, semiregular, quasi-
regular), then so is the other.

Proof. Let X be a coherent configuration. For any positive integer k, set

Fk(X ) := {∆ ∈ F : |∆| = k}.
Suppose X ′ is a coherent configuration algebraically isomorphic to X . Statement
(2) of Proposition 2.3.22 implies that there is a bijection between Fk(X ) and Fk(X ′)
for each k. Since X is half-homogeneous if and only if Fk(X ) 6= ∅ for exactly one
k and X is homogeneous if further this k equals the degree of X , we are done.

For any positive integer k, set

Sk(X ) := {s ∈ S : ns = k}.
If X ′ is a coherent configuration algebraically isomorphic to X , then Corollary
2.3.20 shows that there is a bijection from Sk(X ) to S(X ′) for each k. One can see
that X is equivalenced if and only if it is a scheme and there exists at most one
k > 1 such that Sk(X ) 6= ∅. This proves the statement in the equivalenced case.
The regular case follows from it since X is regular if and only if X is equivalenced
and Sk(X ) 6= ∅ only if k = 1.

Statement (1) of Corollary 2.3.22 implies that each homogeneous component
of X is algebraically isomorphic to some homogeneous component of X ′. Since X
is quasiregular if and only if each homogeneous component of X is regular, the
statement in the quasiregular case follows from that of the regular case. Since X is
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semiregular if and only if X is quasiregular and Sk 6= ∅ only if k = 1, we are done.
�

2.7.33. The coherent configuration of a dihedral group D2n ≤ Sym(n) is sepa-
rable for all n ≥ 1.

Proof. Let Ω = {1, . . . , n}, X = Inv(D2n), and d = bn2 c. Without loss of
generality, we may assume that the n-cycle k := (1, . . . , n) ∈ D2n.

One can see that rk(X ) = d + 1 and the basis relations s0, s1, . . . , sd can be
chosen so that

A0 = As0 = In, Ai = Asi = Pki + Pk−i , i = 1, . . . , d− 1,

and Asd = Pkd if n is even and Asd = Pkd + Pk−d if n is odd. Then by inducition
on i we can prove that

As1Asi =

{
2A0 +A2 if i = 1,

Ai−1 +Ai+1 if 1 < i ≤ d− 1.

These equalities imply that

(2.7.18) s1 · si = si−1 ∪ si+1, i = 1, 2, . . . , d− 1.

Let ϕ be an algebraic isomorphism from X to a coherent configuration X ′ on Ω′.
Set s′i := ϕ(si). Then, by formula (2.7.18) we have

(2.7.19) s′1 · s′i = s′i−1 ∪ s′i+1, i = 1, 2, . . . , d− 1.

One can see that s1 is an undirected cycle of length n. In particular, ns1 = 2
and 〈s1〉 = Ω2. Since ns′1 = ns1 (Corollary 2.3.20) and 〈s′1〉 = Ω′2 (statement (2) of
Exercise (2.7.29)), the relation s′1 is a undirected cycle of length n. It follows that
there exists a bijection f : Ω→ Ω′ such that

s′1 = (s1)f = ϕ(s1).

By induction, formulas (2.7.18) and (2.7.19) show that

(si)
f = ϕ(si), i = 1, . . . , d,

i.e., f induces ϕ. Thus, X is separable. �

2.7.34. [71] Every quasiregular coherent configuration with at most three fibers
is schurian and separable.

Proof. For any coherent configuration X , denote by F := F(X ) the set of all
systems of distinct representatives of F in Ω.

Let X be a quasiregular coherent configuration with |F | ≤ 3. Choose ∆ ∈ F .
For each α ∈ Ω, there exist a unique point α ∈ ∆ such that α and α belong to the
same fiber and a unique basis relation sα ∈ S and such that (α, α) ∈ sα. Since X
is quasiregular, the basis relation sα is thin and

(2.7.20) αsα = {α}.
In pariticular, for any α, β ∈ Ω, (α, α) ∈ s∗α and (β, β) ∈ sβ . Since sα and sβ are
thin, one can see that

(2.7.21) r(α, β) = s∗α · r(α, β) · sβ .
Let ϕ : X → X ′ be an algebraic isomorphism. Then the coherent configura-

tion X ′ is also quasiregular (Exercise (2.7.32)) and |F (X ′)| = |F | (Corollary 2.3.24).
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Therefore, there exists an injection f from ∆ into Ω′ such that ∆′ := Im(f) with
∆′ ∈ F(X ′) and

(2.7.22) r(δ, γ)ϕ = r(δf , γf ), δ, γ ∈ ∆,

here we use the fact that |F | ≤ 3. By the same reason, X satisfies the assumption
of the lemma below. The rest of the proof immediately follows from this lemma.

Lemma A. Let X be a quasiregular coherent configuration. Suppose that for
any ϕ ∈ Isoalg(X ,X ′), any two distinct α, β ∈ ∆ ∈ F , and any α′, β′ ∈ Ω′ with
ϕ(r(α, β)) = r(α′, β′), there exists an injection f : ∆ → Ω′ such that (α, β)f =
(α′, β′) and condition (2.7.22) is satisfied. Then X is separable and schurian.

Remark B. To prove the separability of X , it suffices to assume the weaker
condition, namely for any ∆ ∈ F , there exists an injection f : ∆ → Ω′ satisfying
condition (2.7.22).

Proof. If |F | = 1, then X is regular. Hence X is schurian and separable
(Theorem 2.2.11, Theorem 2.3.33). We may assume without loss of generality that
|F | > 1.

Let ϕ ∈ Isoalg(X ,X ′). Take ∆ ∈ F (for arbitrary α and β). Then by the
assumption of the lemma, there exists an injection f : ∆→ Ω′. One can extend f
to a bijection Ω→ Ω′, also denoted by f . Namely, for any α ∈ Ω, set αf to be the
unique point of Ω′ such that

(2.7.23) αfϕ(sα) = {αf},

(here we use the facts that ϕ(sα) is thin and αf ∈ Ω−(ϕ(sα))). In particular,

(αf , αf ) ∈ ϕ(sα)∗ and (β
f
, βf ) ∈ ϕ(sβ).

Since ϕ(sα) and ϕ(sβ) are thin, we obtain

r(αf , βf ) = ϕ(sα)∗ · r(αf , βf ) · ϕ(sβ).

Together with formula (2.7.22), this imples that for any α, β ∈ Ω,

r(α, β)ϕ =(s∗α · r(α, β) · sβ)ϕ

=ϕ(sα)∗ · r(αf , βf ) · ϕ(sβ)

=r(αf , βf )

=r(α, β)f .

It follows that f ∈ Iso(X ,X ′, ϕ). Hence, X is separable.
To prove the schurity of X , take α and β from different fibers of X and arbitrary

α′, β′ ∈ Ω such that

r(α, β) = r(α′, β′).

Let X ′ = X , ϕ = idS , and ∆ ∈ F be such that α, β ∈ ∆. By the assumption of
the lemma, there exists an injection f : ∆ → Ω such that (α, β)f = (α′, β′) and
condition (2.7.22) is satisfied. One can extend f according to formula (2.7.23) to a
bijection from Ω to itself. By the arguement of the previous paragraph, f induces
ϕ = idS . This yields that f ∈ Aut(X ).

It follows that the group K generated by all such f for all possible (α, β) and
(α′, β′) is transitive on r(α, β). Therefore,

(2.7.24) Orb(K,Γ× Λ) = SΓ,Λ,
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for all distinct Γ,Λ ∈ F . In particular, K acts transitively on each Γ ∈ F . However,
KΓ is a subgroup of the regular group Aut(XΓ) (the regularity holds because X is
quasiregular). Thus, KΓ = Aut(XΓ). This proves formula (2.7.24) for Γ = Λ. We
are done. �

2.7.35. Every semiregular coherent configuration is schurian and separable.

Proof. Let X be a semiregular coherent configuration. Since X is obviously
quasiregular, it suffices to verify the assumptions of Lemma A on page 23 for X .

Let ϕ ∈ Isoalg(X ,X ′). By Exercise 2.7.32, X ′ is semiregular. In particular, all
basis relations of X and X ′ are thin.

Take two distinct points α and β belonging to some ∆ ∈ F and two points
α′, β′ ∈ Ω′ such that

ϕ(r(α, β)) = r(α′, β′).

For any γ ∈ ∆, the fiber containing α′ is equal to Ω−(ϕ(r(α, γ))) (statement (2)
of Corollary 2.3.23). Since every basis relation of X ′ is thin, there exists a unique
point γ′ ∈ Ω′ such that

(2.7.25) {γ′} = α′ϕ(r(α, γ)).

Note that

γ = α ⇒ γ′ = α′ and γ = β ⇒ γ′ = β′.

Moreover, if γ 6= λ ∈ ∆, then r(α, γ) 6= r(α, λ). Hence, γ′ 6= λ′. It follows that
formula (2.7.25) defines an injection

f : ∆ → Ω′, γ 7→ γ′

such that(α, β)f = (α′, β′). Since every basis relation in X is thin, we deduce that
for any γ, λ ∈ ∆,

r(γ, λ) = r(α, γ)∗ · r(α, λ).

It follows that for any γ, λ ∈ ∆,

ϕ(r(γ, λ)) = ϕ(r(α, γ)∗ · r(α, λ))

= ϕ(r(α, γ)∗) · ϕ(r(α, λ))

= ϕ(r(α, γ))∗ · ϕ(r(α, λ))

= r(αf , γf )∗ · r(αf , λf )

= r(γf , λf ).

This implies that the injection f satisfies condition (2.7.22). We are done. �

2.7.36. Let K ≤ Iso(X ). Then K ≤ Aut(XK).

Proof. Choose an arbitrary basis relation t ∈ S(XK). There exists s ∈ S such
that

t =
⋃
k∈K

sk.

This implies that t is K-invariant. Since this is true for any basis relation t
of S(XK), we deduce that K ≤ Aut(XK), as required. �

2.7.37. Let Ψ ≤ Autalg(X ), ϕ ∈ Isoalg(X ,X ′), and Ψ′ = ϕΨϕ−1. Then

(1) Ψ′ ≤ Autalg(X ′),
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(2) ϕΨ : S(X Ψ)→ S(X ′Ψ
′
), sΨ 7→ ϕ(s)Ψ′ is a well-defined bijection,

(3) ϕΨ ∈ Isoalg(X Ψ ,X ′Ψ
′
).

Proof. By the definition of algebraic isomorphisms, both the inverse of an alge-
braic isomorphism and the composition of two algebraic isomorphisms are algebraic
isomorphisms. This proves statement (1).

To prove the other statements, observe that XΨ ≤ X . By Corollary 2.3.21, the
algebraic isomorphism ϕ induces by restriction an algebraic isomorphism from XΨ

to the coherent configuration

(XΨ)ϕ = (Xϕ)ϕ
−1Ψϕ = (X ′)Ψ′ ,

here we use statement (1). However, this induced algebraic isomorphism maps a

basis relation sΨ ∈ S(X Ψ), s ∈ S to ϕ(s)Ψ′ because

ϕ(sΨ) = ϕ(
⋃
ψ∈Ψ

ψ(s)) =
⋃
ψ∈Ψ

ϕψ(s) =
⋃
ψ∈Ψ

(ϕψϕ−1)(ϕ(s)) = ϕ(s)Ψ′ .

This proves statements (2) and (3). �

2.7.38. Find a schurian algebraic fusion of a non-schurian scheme.

Proof. Let X be the unique non-schurian scheme of degree 15. Then X is an
antisymmetric commutative scheme of rank 3. Thus,

ϕ : S → S, s 7→ s∗

is an algebraic isomorphism of X . Set

Φ := 〈ϕ〉.
Then the algebraic fusion XΦ = TΩ is obviously schurian. �

2.7.39. Let G be a group, K = 〈Gright, Gleft〉, and X = Inv(K,G). Then

(1) the stabilizer K1 of the identity of G in K equals Inn(G),
(2) Orb(K1, G) = {xG : x ∈ G},
(3) Adj(X ) is isomorphic to the center of CG,
(4) the scheme X is commutative.

Proof. For any x ∈ G, set xr := xright and cx to be the conjugation mapping
of G induced by x,

cx : G → G, g 7→ x−1gx.

To prove statement (1), we make use of Exercise 1.4.13 showing that

Inn(G) ⊆ K1.

Conversely, for any k ∈ K1, this exercise implies that there exist y, x ∈ G such that
k = yrcx. Thus,

1 = 1k = 1yrcx = yx.

It follows that y = 1. Hence, k = cx ∈ Inn(G). We obtain

K1 ⊆ Inn(G).

We are done.
Statement (2) follows directly from statement (1).
Note that X is a Cayley scheme over G. For each s ∈ S, by formula (??)

ρ−1(s) = αs,



2.7. EXERCISES 26

where ρ is defined as in Exercise 1.4.15 and α = 1 is the identity element of G.
Furthermore, if (α, x) ∈ s for some x ∈ G, then

αs = xG.

Hence, the S-ring corresponding to X (see formual (2.4.9)) is equal to

A = Span{xG : x ∈ G}.

This yields that A is the center of CG.
Note that the mapping ρ induces a linear isomorphism from A to Adj(X ), which

takes S(A) to the standard basis of Adj(X ). Moreover, this linear isomorphism
preserves the structure constants with respect to these bases (page 83). It follows
that

Adj(X ) ∼= A.

This proves statement (3). Since A is commutative, statement (4) follows. �

2.7.40. Let X be a Cayley scheme and X ≥ X ′. Then X is normal, whenever
so is X ′.

Proof. Denote by G the underline group of X . Then,

Gright ≤ Aut(X ).

Since X ′ ≤ X , by formula (2.2.5) we have

(2.7.26) Aut(X ) ≤ Aut(X ′).

It follows that

Gright ≤ Aut(X ′).
Thus, X ′ is a Cayley scheme. Now assume that X ′ is normal, then

Gright � Aut(X ′).

By formula (2.7.26),

Gright � Aut(X ),

which yields that X is normal, as required. �

2.7.41. Let X be a cyclotomic scheme over a group G, H a characteristic
subgroup of G, and ρ the mapping defined in Exercise 1.4.15. Then Hρ ∈ E.

Proof. Let M ≤ Aut(G) be such that X = Inv(GrightM,G). Observe that for
any x, y ∈ G,

(x, y) ∈ Hρ ⇔ yx−1 ∈ H.
As H is a characteristic subgroup of G, for any m ∈M

yx−1 ∈ H ⇔ (yx−1)m ∈ H ⇔ (xm, ym) ∈ Hρ.

It follows that Hρ is M -invariant. Obviously, Hρ is Gright-invariant. Therefore, Hρ

is GrightM -invariant. Thus, Hρ ∈ S∪. Since Hρ is an equivalence relation on G
(statement (6) of Exercise 1.4.16), we are done. �

2.7.42. Let A and A′ be S-rings over groups G and G′, respectively. Then

(1) a ring isomorphism ϕ : A→ A′ is an algebraic isomorphism if and only if
Xϕ ∈ S(A′) for all X ∈ S(A),
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(2) a bijection f : G → G′ is an isomorphism from A onto A′ if and only if
there exists an algebraic isomorphism ϕ : A→ A′ such that

f(Xy) = Xϕyf for all X ∈ S(A), y ∈ G.

Proof. Let X = X (G,A) and X ′ = X (G′,A′). Then

(2.7.27) S(A) = {sρ
−1

: s ∈ S(X )} and S(A′) = {s′ρ
′−1

: s′ ∈ S(X ′)},
where ρ and ρ′ are defined according to formula (1.4.7). Suppose the bijection
ϕ : S(A)→ S(A′) is an algebraic isomorphism of S-rings. By definition, this means
that

ψ : S(X )→ S(X )′, s 7→ (sρ
−1

)ϕρ
′−1

is an algebraic isomorphism of schemes. In other words, we have

Xϕ = (ψ(Xρ))ρ
′−1

, X ∈ S(A).

To prove the necessity of statement (1), suppose that the ring isomorphism ϕ
is an algebraic isomorphim (of S-rings). This means that there exists an algebraic
isomorphism ϕ̃ from X to X ′ such that

ϕ(sρ
−1

) = ϕ̃(s)
ρ′−1

, s ∈ S.

If the left-hand side X := sρ
−1

runs over S(A), then the right-hand side runs over
S(A′) (see formula (2.7.27)), as required.

To prove the sufficency, assume that ϕ : A→ A′ is a ring isomorphism such that
Xϕ ∈ S(A′) for any X ∈ S(A). It follows that there exists X ′ ∈ S(A′) satifying

X ′ = Xϕ.

Since ϕ is obviously a linear isomorphism, A and A′ have identical dimensions.
Taking into account that S(A) and S(A′) are linear bases of A and A′ respectively,
we conclude that the mapping X 7→ X ′ is a bijection. Thus,

ϕ̃ : ρ(X) 7→ ρ′(X ′)

is a bijection from S(X ) to S(X ′) (see formula (2.7.27)).
Moreover, for any ρ(X), ρ(Y ), ρ(Z) ∈ S(X ),

c
ρ(Z)
ρ(X),ρ(Y ) = cZX,Y = cZ

′

X′,Y ′ = c
ρ(Z′)
ρ(X′),ρ(Y ′),

where the first and the third equalities follow from formulas on structure constants
on page 83 and the second equality follows from the fact that ϕ is a ring isomor-
phism. We deduce that ϕ̃ is an algebraic isomorphism from X to X ′.

To prove the necessity of statement (2), assume first that f : G → G′ is an
isomorphism from A to A′. This implies that

S(X ′) = {ρ(X)f : X ∈ S(A)}.
Hence, for any X ∈ S(A) there exists a unique Xϕ ∈ S(A′) such that

(2.7.28) ρ(X)f = ρ′(Xϕ).

Moreover,

ϕ : S(A)→ S(A′), X 7→ Xϕ

is an algebraic isomorphism of S-rings. Thus, for any y ∈ G and any x ∈ X,

(y, xy) ∈ ρ(X) ⇒ (y, xy)f ∈ ρ′(Xϕ) ⇒ (xy)f ∈ Xϕyf .
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This yields that
f(Xy) ⊆ Xϕyf .

Since f is a bijection and |X| = |Xϕ|, we conclude that for all X ∈ S and y ∈ G
(2.7.29) f(Xy) = Xϕyf .

Conversely, if there exists an algbraic isomorphism ϕ from A to A′ satisfying (2.7.29)
for all X ∈ S and all y ∈ G, then it is easy to see that equality (2.7.28) holds for
all X ∈ S. Thus, the bijection f : G→ G′ is an isomorphism induced the algebraic
isomorphism ϕ. �

2.7.43. Let Ω be the set of flags of a projective plane of order q, where the flag
is a pair of a point and a line incident to it. Every two flags (p, l) and (p′, l′) belongs
to one of the relations in the set S = {s0, . . . , s5} that are defined as in Fig. 2.4,
where the double line and arrow denote the equality and incidence, respectively,

s0 : p // l

p′ // l′
s1 : p // l

p′ // l′
s2 : p // l

p′ // l′
s3 : p //

""
l

p′ // l′
s4 : p // l

p′ //
<<
l′

s5 : p // l

p′ // l′

Figure 2.4. The scheme on flags of a projective plane: basis relations.

and the absence of any line means general position. For example, s0 = 1Ω and s1

consists the pairs of flags having common point. Then

(1) si = s∗i if and only if i 6= 3, 4, and s∗3 = s4,
(2) (s3, s4) = (s1 · s2, s2 · s1) and s5 = s1 · s2 · s1 = s2 · s1 · s2,
(3) the rainbow (Ω, S) is a scheme of degree (q2 + q + 1)(q + 1) and rank 6.

Proof. For each i, the relation si is symmetric if and only if ∗ induces an auto-
morphism of the diagram in Fig. 2.4 corresponding to si. This proves statement (1)
for i 6= 3, 4. The rest follows from the fact that ∗ maps the diagram of s3 to that
of s4 and vice versa.

To prove statement (2), let (p, l), (p′, l′) ∈ Ω. It is easily seen that

((p, l), (p′, l′)) ∈ s3 ⇔ p 6= p′, l 6= l′ and (p′, l) /∈ I, (p, l′) ∈ I
⇔ ((p, l), (p, l′)) ∈ s1 and ((p, l′), (p′, l′)) ∈ s2

⇔ ((p, l), (p′, l′)) ∈ s1 · s2.

It follows that s3 = s1 · s2. By statement (1), this implies that

s4 = s∗3 = (s1 · s2)∗ = s∗2 · s∗1 = s2 · s1.

To prove the remaining equalities, we argue as before to get

((p, l), (p′, l′)) ∈ s5 ⇔ ((p, l), (p′, l′′)) ∈ s3 and ((p′, l′′), (p′, l′)) ∈ s1

⇔ ((p, l), (p′, l′)) ∈ s3 · s1,

where l′′ = pp′. Since s3 = s1 · s2, we obtain

s5 = s3 · s1 = s1 · s2 · s1.

This last equality in statement (2) can be proved similarly.
To prove statement (3), we note that (Ω, S) is indeed a rainbow: the condi-

tion (CC1) holds as s0 = 1Ω and the condition (CC2) follows from statement (1).
It suffices to verify the condition (CC3), which follows from the lemma below (the
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calculation of |Ω| follows from the facts that in any projective plane of order q,
there are q2 + q + 1 points and each point belongs to q + 1 distinct lines).

Lemma. For any i, j, k ∈ {0, . . . , 5}, the number |αsi ∩ βs∗j | is a polynomial
in q that does not depend on the pair (α, β) ∈ sk.

Proof. Let i, j, k ∈ {0, . . . , 5} and (α, β) ∈ sk. Set

ckij := ckij(α, β) = |αsi ∩ βs∗j |.

Denote c0ii∗ by ni. Then by an easy computation, one can get that

ni =


1 if k = 0,

q if k = 1, 2,

q2 if k = 3, 4,

q3 if k = 5.

In what follows, we compute ckij 6= 0 with i, j, k ∈ {1, . . . , 5}. By statement (2) and
its proof, we have:

s1 · s2 = s3, s2 · s1 = s4, s3 · s1 = s5,

s1 · s4 = s5, s2 · s3 = s5, s4 · s2 = s5.

In each of these cases, si · sj = sk implies ninj = nk (see the formula for ni). Thus,

c312 = c421 = c531 = c514 = c523 = c542 = 1.

Since both s0 ∪ s1 and s0 ∪ s2 are equivalence relations on Ω, we have,

c111 = c222 = q − 1.

Let Ai := Asi , i = 0, 1, . . . , 5. Then from what we got above, it follows that
each of the products

A1A2, A2A1, A3A1, A1A4, A2A3, A4A2, A1A1, A2A2

is a linear combination of A0, . . . , A5. Because of this, each of the products below
is also a combination of this type:

A1A3 = A2
1A2 = qA2 + (q − 1)A1A2, A1A5 = A2

1A4 = qA4 + (q − 1)A1A4,

A2A4 = A2
2A1 = qA1 + (q − 1)A2A1, A2A5 = A2

2A3 = qA3 + (q − 1)A2A3,

A3A2 = A1A
2
2 = qA1 + (q − 1)A1A2, A3A4 = A1A

2
2A1 = qA2

1 + (q − 1)A1A4,

A4A1 = A2A
2
1 = qA2 + (q − 1)A2A1, A4A3 = A2A

2
1A2 = qA2

2 + (q − 1)A2A3,

A2
4 = A2

2A3 = qA3 + (q − 1)A2A3, A5A1 = A3A
2
1 = qA3 + (q − 1)A3A1,

A5A2 = A4A
2
2 = qA4 + (q − 1)A4A2.

Then each of the rest products is also a combination of the same type:

A2
3 = A1(A2A1A2) = A1A5, A3A5 = A1A

2
2A3 = qA1A3 + (q − 1)A1A5,

A4A5 = A2A
2
1A4 = qA2A4 + (q − 1)A2

4, A5A3 = A2
4A2 = qA3A2 + (q − 1)A5A2,

A5A4 = A1A
2
4 = qA1A3 + (q − 1)A1A5, A2

5 = A1A5A3 = qA4A3 + (q − 1)A1(A4A3).

Now the computation that we did shows that each ckij is a polynomial of q. We are
done. �
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2.7.44. Any scheme algebraically isomorphic to the scheme associated with a
projective (respectively, affine) plane, is associated with a projective (respectively,
affine) plane of the same order.

Proof. Let X be the coherent configuration associated with a projective plane P
and ϕ an algebraic isomorphism from X onto X ′. Then X ′ has two fibers (Corollary
2.3.24):

P ′ := Pϕ and L′ := Lϕ,

where P and L are fibers of X . Set

Ω′ := P ′ ∪ L′ and s′i := ϕ(si), i = 1, . . . , 8.

Since the algebraic isomorphism ϕ preserves intersection numbers, we obtain

c
s′3
s′5s
′
6

= cs3s5s6 = 1 and c
s′4
s′6s
′
5

= cs4s6s5 = 1.

Let us define an incidence relation on Ω′, where the set of points, the set of
lines, and the incidence relation are respectively P ′, L′, and s′5. Then the above
formulas imply respectively that the axioms (P1) and (P2) are satisfied.

Let the order of P be q ≥ 2. Our next goal is to show that (P ′, L′) satisfies
the axiom (P3). Fix a point p′1. Since the number of lines incident to p′1 equals
ns′5 = q+1 ≥ 3, one can find three distinct lines l′1, l

′
2 and l′3 incident to p′1. Because

|L′| = q2 + q + 1 > q + 1,

there exists a line l′4 not incident to p′1. Denote by q′i the point which is incident
to l′4 and l′i, i = 1, 2, 3. Now choose a point p′2 which is incident to l′2 but different
from p′1 and q′2 (here we use the fact that ns′6 = q + 1 ≥ 3). Then the four points
p′1, q

′
1, q
′
3 and p′2 satisfy the axiom (P3) obviously.

Now let X = (Ω, S) be a scheme of a finite affine plane A of order q. And let ϕ
be an algebraic isomorphism from X onto X ′. Since X is symmetric of degree q2,
X ′ is symmetric of degree q2.

Set
Ω′ := Ωϕ and s′ := ϕ(s), s ∈ S.

Since ϕ preserves intersection numbers, formula (2.5.5)a implies that the nonzero

intersection numbers ct
′

r′s′ with 1Ω′ /∈ {r′, s′} are as follows:

ct
′

r′s′ =


q − 1 if r′ = s′ and t′ = 1Ω′ ,

q − 2 if r′ = s′ = t′,

1 if r′ 6= s′ 6= t′ 6= r′.

Observe that for any irreflexive basis relation s′,

(2.7.30) s′ · s′ = s′ ∪ 1Ω′ .

This yields that es′ := 1Ω′ ∪ s′ is a parabolic of X ′. For any α′ ∈ Ω′, the class of es′

that contains α′ is denoted by ls′,α′ . Then, we have

(2.7.31) ls′,α′ = {α′} ∪ α′s′ and Ω′/es′ = {ls′,α′ : α′ ∈ Ω′}.
Claim: Let s′, t′ ∈ S′ and α′, β′ ∈ Ω′. Then |ls′,α′∩lt′,β′ | = 1 whenever s′ 6= t′.
Proof. Set r′ := r(α′, β′). If r′ = s′ (respectively, r′ = t′), then ls′,α′ ∩ lt′,β′ =

{β′} (respectively, ls′,α′ ∩ lt′,β′ = {α′}) by the first formula in (2.7.31). To prove
the claim, we may assume that

s′ 6= r′ 6= t′.
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Then cr
′

s′t′ = 1 (see the formulas for intersection numbers). Therefore,

ls′,α′ ∩ lt′,β′ = {γ′},
for a uniquely determined point γ′, as required. �

Now we define an incidence structure with point set Ω′, line set

L′ = {ls′,α′ : s′ ∈ S′#, α′ ∈ Ω′},
and the incidence relation given by inclusion. Our next goal is to prove that this
incidence structure is an affine plane.

Let α′ and β′ be distinct points. Then

α′, β′ ∈ ls′,α′ ,
where s′ = r(α′, β′). Let lt′,γ′ be another line containing α′ and β′. By the second
formula in (2.7.31), we have s′ ⊆ et′ . Thus, s′ = t′. It follows that

lt′,γ′ = ls′,α′ .

This yields that ls′,α′ is the unique line containing α′ and β′. Thus, the axiom
(AP1) holds.

Let β′ be a point and ls′,α′ a line such that β′ /∈ ls′,α′ . It follows that ls′,α′ 6=
ls′,β′ . Then, ls′,α′ ∩ ls′,β′ = ∅ by the definition, i.e., the line ls′,β′ is parallel to the
line ls′,α′ . For any t′ 6= s′, the line lt′,β′ intersects the line ls′,α′ by the claim. Thus,
the line ls′,β′ is the unique line parallel to the line ls′,α′ . This proves the axiom
(AP2).

To prove the axiom (AP3), let l′ ∈ L′ be a line. Then

2 ≤ q = |l′| < |Ω′| = q2.

Therefore, there exist distinct points α′, β′ ∈ l′ and a point γ′ /∈ l′. Since l′ is the
unique line containing α′ and β′ (axiom (AP1)), the three points α′, β′, and γ′

statify the axiom (AP3).
Denote the constructed affine plane by A′. Then the irreflexive basis relations

of X ′ are in one-to-one corrspondence with the parallel classes of A′: s′ ∈ S′#

corresponds to the parallel class {ls′,α′ : α′ ∈ Ω′}. It follows that X ′ is the scheme
of the affine plane A′. We are done. �

2.7.45. Among the affine schemes, there exist

(1) schurian schemes, which are not separable,
(2) normal Cayley schemes, which are not schurian.

Proof. To prove statement (1), take two nonisomorphic affine planes of order q,
one of which is the Galois plane (there exist infinitely many q such that there at
least two such planes and the smallest q equals 9; see the table on page 11 in1).
The schemes of these planes are algebraically isomorphic (Theorem 2.5.8) but not
combinatorially isomorphic. Thus, each of these schemes is not separable. The
required example is given by the scheme of the Galois plane (this scheme is schurian
by Theorem 2.5.7).

To prove statement (2), take a non-Galois translation plane A (by definition,
a translation plane is an affine plane whose automrophism group has a regular
subgroup acting on the points). Let X be the scheme of A. Then X is not schurian.

1G.E. Moorhouse, Incidence Geometry, University of Wyoming, Math 5700 course notes,
2017.
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Moreover, by Theorem 2.3.15 in2, X is a normal Cayley scheme over the regular
subgroup of Aut(A). �

2.7.46. In any (n, k, λ)-design, the number r of blocks containing a point does
not depend on the choice of this point. Moreover,

nr = bk and λ(n− 1) = r(k − 1),

where b is the number of blocks.

Proof. To prove the statement, we may assume without loss of generality that
λ > 0. Let α ∈ Ω and B1, . . . , Br be all the elements in B that contains α. Then

kr =

r∑
i=1

|Bi| = (n− 1)λ+ r.

Indeed, we can count the sum
∑r
i=1 |Bi| in two different ways: the first one uses

the fact that |Bi| = k for each i, whereas the second one is obtained from the fact
that any β 6= α is counted λ times and α is counted r times. This proves the second
equality in question and shows that the number r does not depend on the choice
of α. The first equality follows by counting the sum of the cardinalites of all blocks
in two different ways. �

2.7.47. A design D is said to be symmetric if the number of blocks is equal to
the number of points. The following three statements are equivalent:

(1) D is symmetric,
(2) any two distinct blocks of D have the same number of common points,
(3) D is a coherent design, the corresponding coherent configuration of which

has type [ 2
2

2
2 ].

Proof. Let D be an (n, k, λ)-design on ∆, b the number of blocks, and r the
number defined in Exercise 2.7.46. Without loss of generality, we may assume that
n > 1 and b > 1. If r = λ, then k = n by Exercise (2.7.46) and we are done. In
what follows, λ 6= r.

Let A be the {0, 1}-matrix with rows and columns indexed respectively by ∆
and B such that

Aα,B = 1 ⇔ α ∈ B.
By formula (2.5.7),

(2.7.32) J∆A = kJ∆,B and AJB = rJ∆,B.

And by formula (2.5.9),

(2.7.33) AAT = λ(J∆ − I∆) + rI∆.

This matrix is nonsigular as r 6= λ. Thus,

(2.7.34) n = rk(AAT ) = rk(A) ≤ b.

2M. Biliotti, V. Jha, and N. L. Johnson, Foundations of Tanslation Planes, Pure and Applied
Mathematics, A Program of Monographs, Textbooks, and Lecture Notes, No. 243, New York,

Basel, 2001
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(3) ⇒ (2) Let X be the coherent configuration associated with D. In the
notation of Proposition 2.5.11, each block of D has the form αs, α ∈ Γ, where
Γ = Ω−(s). The assumption on D implies that for any α, β ∈ Γ,

αs 6= βs ⇔ (α, β) ∈ t,
where t is the unique irreflexive basis relation in SΓ. Hence, the cardinality of the
intersection of any two distinct blocks is ctss∗ .

(2) ⇒ (1) Assume that any two distinct blocks of D have exactly l common
points, for a fixed integer l > 0. Then the complementary design D′ is a (b, r, l)-
design D′ on B with blocks

{B ∈ B : α ∈ B}, α ∈ ∆.

Applying formula (2.7.34) to the designs D and D′, we obtain respectively n ≤ b
and b ≤ n. It follows that n = b, as required.

(1)⇒ (3) Assume n = b. Then r = k by Exercise 2.7.46. Moreover, J∆,B and
A are square matrices. Since AAT is nonsigular and rk(A) = rk(AAT ), it follows
that A is nonsigurlar. By the second equality in formula (2.7.32),

A−1J∆,B =
1

r
JB.

By the first equality in that formula, we obtain

A−1(J∆A) = A−1(kJ∆,B) =
k

r
JB.

These two formulas together with formula (2.7.33) yield that

ATA = A−1(AAT )A

= A−1(λJ∆ + (r − λ)I∆)A

= λA−1(J∆A) + (r − λ)IB

=
λk

r
JB + (r − λ)IB

= λJB + (r − λ)IB.

(2.7.35)

Let Ω = ∆ ∪B. From now on, it is convenient to consider the linear spaces
Mat∆, MatB, Mat∆,B, and MatB,∆ as subspaces of MatΩ via the natural injections
from ∆ and B to Ω.

Define a rainbow X = (Ω, S) with S the partition of Ω2 into the relations
belonging to the union of the following sets:

S∆ = S(T∆), SB = S(TB), S∆,B = {s, s′}, SB,∆ = S∗∆,B,

where the adjacency matrix of s is equal to A and s′ = (∆ × B)\s. By for-
mulas (2.7.32), (2.7.33), and (2.7.35), it follows that that Adj(X ) is closed with
respect to matrix multiplication. Thus, X is a coherent configuration of type [ 2

2
2
2 ].

Since B = Bs, the design D is coherent. We are done. �

2.7.48. [22] Define a system of linked designs to be a collection {Ω1, . . . ,Ωm}
of sets (m ≥ 3) and an incidence relation Iij ⊆ Ωi×Ωj for all distinct i and j, such
that for all distinct i, j, and k,

(LD1) the pair (Ωi, {αIji : α ∈ Ωj}) is a symmetric design,
(LD2) the number of elements in Ωk incident with both α ∈ Ωi and β ∈ Ωj

depends only on whether or not (α, β) ∈ Iij .
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Then every such system defines a coherent configuration X on the union of the Ωi,
such that

(1) F = {Ω1, . . . ,Ωm},
(2) XΩi = TΩi for all i,
(3) SΩi,Ωj

= {Iij , I ′ij} for all i 6= j, where I ′ij = (Ωi × Ωj) \ Iij .

Proof. By condition (LD1), the implication (1)⇒ (3) in Exericse 2.7.47 yields
that for any i 6= j, the pair (Ωi ∪ Ωj , Sij) with

(Sij)Ωi = TΩi , (Sij)Ωi,Ωj = {Iij , I ′ij}, (Sij)Ωj = TΩj

is a coherent configuration. For each i, let Iii be the irreflexive basis relation in TΩi

and I ′ii = 1Ωi . It is straightforward that

(Ω, S) := (Ω, {Iij , I ′ij : 1 ≤ i, j ≤ m})
is a rainbow, where Ω =

⋃
i Ωi. To complete the proof, it suffices to show that

(Ω, S) is a coherent configuration.
Let 1 ≤ i, j ≤ m, r ∈ Sik, and s ∈ Skj . Assume that r · s 6= ∅. Then we need

to verify that the number |αr ∩ βs∗| does not depend on the choice of (α, β) ∈ t,
where t = Iij ; the case t = I ′ij is proved similarly.

First, suppose that i 6= k 6= j 6= i. If r = Iik and s = Ikj , then the required
statement follows from the condition (LD2). If r = I ′ik and s = Ikj , then

βs∗ = (αIik ∩ βI∗kj) ∪ (αr ∩ βs∗)
is a disjoint union. Since |βI∗kj | is the k-parameter of the symmetric design in the

condition (LD1) and |αIik ∩ βI∗kj | is constant, we are done. The same argument

works if r = Iik and s = I ′kj . Finally, if r = I ′ik and s = I ′kj , then the required
statement follows from the facts that the decomposition

βs∗ = (αIik ∩ βs∗) ∪ (αr ∩ βs∗)
is disjoint and that the numbers |βs∗| and |αIik ∩ βs∗| are constants.

Second, suppose that {i, j, k} = {a, b} with 1 ≤ a, b ≤ m. Then |αr∩βs∗| is an
intersection number of the coherent configuration (Ωa ∪ Ωb, Sab) and we are done.
�

2.7.49. The mapping (2.6.1) is a closure operator in the class of all rainbows X
on Ω, i.e., the following statements hold:

(1) X ≤WL(X ),
(2) if X ≤ X ′, then WL(X ) ≤WL(X ′),
(3) WL(WL(X )) = WL(X ).

Proof. By the definition of coherent closures, one can see that

(2.7.36) Y ∈ T(Ω, S(X )) ⇒ X ≤ Y and WL(X ) ≤ Y.
Setting X := X and Y := WL(X ) in formula (2.7.36), we get statement (1).
By statement (1), we have

X ≤ X ′ ≤WL(X ′).
This implies that WL(X ′) belongs to T(Ω, S(X )). Thus, statement (2) follows from
formula (2.7.36) for X = X and Y = WL(X ′).

Setting X := WL(X ) and Y := WL(X ) in formula (2.7.36), we have

WL(WL(X )) ≤WL(X ).
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The reverse inclusion in statement (3) follows by statement (1). �

2.7.50. Let S and T be sets of binary relations on Ω. Assume that S∪ ⊆ T∪.
Then WL(S) ≤WL(T ).

Proof. Denote WL(T ) by X . By the assumption and the definition of coherent
closure,

S ⊆ S∪ ⊆ T∪ ⊆ S(X )∪.

This implies that X ∈ T(Ω, S). Since any coherent configuration in T(Ω, S) is a
fission of WL(S), we are done. �

2.7.51. Let T be a set of binary relations on Ω. Denote by S the partition of Ω2

such that (α, β) and (α′, β′) belong to the same class if and only if

∀t ∈ {1Ω} ∪ T ∪ T ∗ : (α, β) ∈ t ⇔ (α′, β′) ∈ t.
Then (Ω, S) is a rainbow and WL(T ) = WL(S).

Proof. Let U = {1Ω} ∪ T ∪ T ∗. We claim that

(2.7.37) U ⊆ S∪.
Indeed, given s ∈ S and t ∈ U , we have

s ∩ t 6= ∅ ⇒ s ⊆ t,
for otherwise there exist pairs (α, β), (α′, β′) ∈ s such that (α, β) ∈ t but (α′, β′) /∈ t,
a contradiction. Moreover, for any s′ ∈ S such that s′ 6= s, by formula (2.7.37) and
the definition of S, there exists u′ ∈ U such that

(2.7.38) s′ ⊆ u′ and s ∩ u′ = ∅.
Next we prove that (Ω, S) is a rainbow. Since 1Ω ∈ U , formula (2.7.37) implies

that 1Ω ∈ S∪. Thus, condition (CC1) holds.
To verify condition (CC2), let s ∈ S. For (β, α), (β′, α′) ∈ Ω2, one can see that

(β, α), (β′, α′) ∈ s∗ ⇐⇒ (α, β), (α′, β′) ∈ s
⇐⇒ (α, β) ∈ t⇔ (α′, β′) ∈ t, ∀t ∈ U
⇐⇒ (β, α) ∈ t∗ ⇔ (β′, α′) ∈ t∗, ∀t ∈ U.

Since U∗ = U , we are done.
Finally, we show that WL(S) = WL(T ). By formula (2.7.37), we have T∪ ⊆ S∪.

By Exercise (2.7.50), this yields that

WL(T ) ≤WL(S).

To prove the reverse inclusion, it suffices to prove the following claim.

Claim: S ⊆ S(WL(T ))∪.

Proof. Let s ∈ S. Suppose first that s is contained in v :=
⋃
u∈U u. By

formula (2.7.37), there exists u ∈ U such that s ⊆ u. Then for each s′ 6= s with
s′ ⊆ u, there exists u′ ∈ U satisfying formula (2.7.38). Let w be the union of all
such u′. Then

w ∩ s = ∅ and u\s ⊆ w,
where the second formula holds because u ∈ S∪. It follows that

s = u\w.
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Observe that u,w ∈ U∪ ⊆ S(WL(T ))∪ as WL(T ) is a rainbow. The claim follows
in this case. To complete the proof, it suffices to note that if s * v, then by the
definition of S and v we have s = Ω2\v. �

2.7.52. Let X = (Ω, D) be a colored graph, and let ϕ be an algebraic isomor-
phism from X = WL(PcX) onto another coherent configuration. Define a graph
X′ = Xϕ by

Ω(X′) = Ωϕ and D(X′) = Dϕ

with a coloring cX′ each color class of which is of the form (c−1
X (i))ϕ for some color i

of cX. Then the colored graphs X and Xϕ are isomorphic if and only if ϕ is induced
by an isomorphism.

Proof. Set
T := PcX , T ′ := PcX′ , and X ′ := Xϕ.

To prove the necessity, let f ∈ Iso(X,X′) be a (colored graph) isomorphism. Then
for any color class t ∈ T \,
(2.7.39) tf = tϕ.

Without loss of generality, we may assume that (Ω, T ) is a rainbow. Indeed,
if X is not a complete colored graph, then X is replaced by a complete colored graph
with an additional color class. Now T is a partition of Ω2 satisfying the condition
(CC1). If T 6= T ∗, then T is replaced by {t ∩ s∗ : t, s ∈ T, t ∩ s∗ 6= ∅}. After these
replacements, f and ϕ still satisfy formula (2.7.39).

To complete the proof of the necessity, it suffices to verify formula (2.7.39) for
all t ∈ S, where S = S(X ). By Lemma 2.6.3, it suffices to verify this formula for
all t = wk(r, s, t), where wk(r, s, t) is defined on page 99. However, one can easily
see that

wk(r, s, t)f = wk(rf , sf , tf ) = wk(rϕ, sϕ, tϕ) = wk(r, s, t)ϕ.

We are done.
To prove the sufficiency, suppose that f ∈ Iso(X ,X ′, ϕ). Since T ⊆ S∪, it

follows that
ϕ(t) = tf , ∀t ∈ T.

This yields that f ∈ Iso(T, T ′). �

2.7.53. Let X be an undirected cycle on n vertices. Then WL(X) = Inv(D2n).

Proof. Without loss of generality, we may assume that Ω = {1, . . . , n}. Then,

S(X ) = {s0 = 1Ω, s1, . . . , sd},
where X = Inv(D2n), d = bn2 c, and s1, . . . , sd are defined as in Exercise (2.7.33).
In particular, we may assume that the arc set of X equals s1. Then

WL(X) = WL({s1}) ≤ X .
To prove the converse inclusion, note that s0 and s1 are relations of WL(X).

Using formula (2.7.18) and induction on i = 0, . . . , d, one can see that each si is a
relation of WL(X), i.e., S(X ) ⊆ S(WL(X))∪. It follows that

X ≤WL(X).

We are done. �
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2.7.54. Let X be a vertex-disjoint union of two connected graphs X1 and X2

on Ω1 and Ω2, respectively. Assume that ∆ ∈ F (WL(X)) is such that

|∆ ∩ Ω1| 6= |∆ ∩ Ω2|.
Then the graphs X1 and X2 are not isomorphic.

Proof. Suppose the conclusion is false. Then there exists f ∈ Iso(X1,X2). Let

Ω = Ω1 ∪ Ω2 and f̃ ∈ Sym(Ω) be such that

αf̃ =

{
αf if α ∈ Ω1,

αf
−1

if α ∈ Ω2.

Then obviously f̃ ∈ Aut(X). By formula (2.6.3), we have f̃ ∈ Aut(WL(X )). This

implies that ∆f̃ = ∆ for any ∆ ∈ F (WL(X )). Since Ωf̃1 = Ω2, it follows that

(∆ ∩ Ω1)f̃ = ∆f̃ ∩ Ωf̃1 = ∆ ∩ Ω2.

Thus, |∆ ∩ Ω2| = |∆ ∩ Ω1| for all ∆, a contradiction. �

2.7.55. Let X be a graph and ϕ an algebraic isomorphism from WL(X) to
another coherent configuration. Then

(1) if sd(X) is the relation on Ω(X) consisting of all pairs of vertices at dis-
tance d in X, then sd(X)ϕ = sd(X

ϕ),
(2) if the graph X is distance-regular, then the graph Xϕ is also distance-

regular and IA(X) = IA(Xϕ).

Proof. To prove statement (1), by Exercise (2.7.52) we have ϕ(A) = A′, where
A and A′ are respectively the adjacency matrices of X and Xϕ. Thus, applying the
notation in the proof of Theorem 2.6.7, for each i ≥ 0,

ϕ(Ai) = ϕ(

i∑
j=0

Aj) =

i∑
j=0

A′j = A′i.

Thus, one can see that

(si)
ϕ = (sf (Ai)

ϕ = sf (A′i) = s′i,

where sf is defined on the end of page 102. In particular,

sd(X)ϕ = (sd \ sd−1)ϕ = sd(X
ϕ),

as required.
To prove statement (2), observe that if X is distance-regular, then

S(WL(X)) = {si : i = 0, . . . , d},
where d is the diameter of X. By statement (1),

S(WL(Xϕ)) = {s′i : i = 0, . . . , d}.
This implies that Xϕ is distance-regular. Since ϕ preserves intersection numbers,
IA(X) = IA(Xϕ). �

2.7.56. Let X be a connected but not 2-connected undirected graph3 with at
least 3 vertices. Then the coherent configuration of X is not homogeneous.

3An undirected graph is said to be k-connected if no two of its vertices are separated by fewer
than k other vertices.
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Proof. Since X is not 2-connected, there exists a vertex α such that X′ is not
connected, where X′ is the subgraph of X by removing the vertex α. Set Ω := Ω(X)
and Ω′ := Ω(X′).

Since |Ω′| ≥ 2, the integer

d := max{d(α, β) : β ∈ Ω′}.

is positive, where here and below the distances are taken in the graph X. Choose
β ∈ Ω′ such that d(α, β) = d. Since X′ is not connected, there exists a vertex
γ ∈ Ω′ such that β and γ belong to distinct connected components of X′. Since X
is connected and X′ is not connected, any path from β to γ in X passes through α.
This implies that

d′ = d(β, γ) = d(α, β) + d(α, γ) > d.

Denote by sd′ the relation on Ω “to be at distance d′”. Then sd′ is a nonempty
relation of X := WL(X) (statement (2) of Theorem 2.6.7). This implies that Ω(sd′)
is a homogeneity set of X . On the other hand, by the definitions of d and d′,
(α, δ) /∈ sd′ for all δ ∈ Ω. So α /∈ Ω(sd′) and hence Ω(sd′) 6= Ω. Thus, X is not
homogeneous, as required. �

2.7.57. Let X be an antisymmetric scheme of rank 3, and S = {s0, s1, s2},
where s0 = 1Ω. Then the graphs associated with s1 and s2 are doubly regular tour-
naments, ns1 = ns2 = (n− 1)/2, and the intersection numbers of X are determined
from the formulas

(2.7.40) c011 = 0, c012 =
n− 1

2
, c111 = c112 = c212 =

n− 3

4
, c211 =

n+ 1

4
,

where ckij = csksisj for all i, j, k. In particular, n = 3 (mod 4).

Proof. By the assumption on X , we have

s∗1 = s2 and s1 ∪ s2 = Ω2\1Ω.

Then the graphs associated with s1 and s2 are tournaments. Moreover, c011 = 0 by
the first equality and statement (1) in Exercise (2.7.6). Since X is a scheme,

ns1 = ns2 and
2∑
i=0

nsi = n.

As ns0 = 1, we obtain

(2.7.41) ns1 = ns2 = (n− 1)/2 = c012.

By formula (2.1.14),

ns1c
1
11 = ns2c

2
21 = ns2c

2
12.

According to formula (2.7.41), we obtain

c111 = c221 = c212.

Applying formula (2.1.3), these numbers are equals to

c222 = c121 = c112.

In particular,

c111 = c112.
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By formula (2.1.7),
2∑
i=0

c11i = ns1 =
n− 1

2
.

Together with the obvious fact that c110 = 1, we have

c111 = c112 =
n− 3

4
= c212.

Finally,

c210 = 0, c212 =
n− 3

4
,

2∑
i=0

c21i = n1 ⇒ c211 =
n+ 1

4
,

where the first equality on the left-hand side is obvious and the third one follows
from formula (2.1.7).

Since c112 = c212 = n−3
4 , any two distinct points have n−3

4 common neighbors in
the graph X1 associated with s1. It follows that X1 is a doubly regular tournament.
The same statement is true for the graph associated with s2. �

2.7.58. [11] An antisymmetric scheme of rank 3 is schurian if and only if each
irreflexive basis graph is isomorphic to a Paley tournament.

Proof. Let X be an antisymmetric scheme of rank 3 and s an irreflexive basis
relation of X . Then obviously, WL(s) = X where WL({s}) is denoted by WL(s).

To prove the sufficiency, suppose the basis graph of s is isomorphic to a Pa-
ley tournament, i.e., a basis graph of an irreflexive basis relation t of the scheme
Cyc(F,M), where F = Fq with q = 3 (mod 4) and M is the subgroup of F× of
index 2. Now let f be the corresponding isomorphism, i.e., sf = t. By formula
(2.6.3), we obtain

f ∈ Iso(s, t) ⊆ Iso(WL(s),WL(t)) = Iso(X ,Cyc(F,M)).

In other words, X is isomorphic to the schurian scheme Cyc(F,M). We are done.
To prove the sufficiency, let X be schurian. Then the group Aut(X ) acts tran-

sitively on the points and arcs of the basis graph of s. Since X is a tournament
(Exercise (2.7.57)), we are done by the main result of J.L.Berggren in [12], which
says that if the automorphism group of a tournament is transitive on the points
and arcs then the tournament is isomorphic to a Paley tournament. �

2.7.59. [52] The following statements hold:

(1) any affine scheme is amorphic.
(2) the degree of any amorphic scheme of rank at least 4 is a square.

Proof. To prove statement (1), suppose that (Ω, S) is an affine scheme. Denote
by Ψ the stabilizer of 1Ω in Sym(S). According to formula 2.5.5, one can see that
for any f ∈ Ψ and any r, s, t ∈ S,

ctrs = c
tf

rfsf
.

Thus, f is an algebraic automorphism of X . It follows that Ψ ≤ Autalg(X ). Since
obviously Autalg(X ) ≤ Ψ, we have

(2.7.42) Autalg(X ) = Ψ.
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For any partition Π of S, set ΦΠ :=
∏
π∈Π Sym(π). Now if Π contains {1Ω},

then ΦΠ ≤ Ψ. By formula (2.7.42) and Lemma 2.3.26, (Ω, SΦΠ) is a scheme. Since

SΠ = SΦΠ ,

we are done.
To prove statement (2), let X be an amorphic scheme of rank at least 4 and

degree n. By Theorem 3.3 in4, for any irreflexive basis relations r, s, t with r 6= s 6=
t 6= r, we have

(2.7.43) ctrs =
nrns

(
√
n+ ε)2

,

where ε ∈ {−1, 1}. Since ctrs is a positive integer, formula (2.7.43) implies that
√
n

is an integer. Thus, n is a square. �

2.7.60. [101] A finite affine plane is Desarguesian if and only if the correspond-
ing scheme satisfies the 4-condition.

Proof. To prove the necessity, let A be a Desarguesian finite affine plane and X
the scheme of A. Then by the Veblen-Young theorem, A is an affine Galois plane.
Hence, the scheme X is schurian (Theorem 2.5.7), i.e., X = Inv(K,Ω), where
K = Aut(X ) and Ω is the point set of A. This implies that every basis relation
of X is a K-orbit. Let rij ∈ S, 1 ≤ i, j ≤ 4 and

Λ = {α ∈ Ω4 : r(αi, αj) ∈ rij , 1 ≤ i, j ≤ 4}.
Any quadruple γ ∈ Λ can be treated as a 4-vertex colored subgraph X{γ1,...,γ4},
where X is a colored graph associated with the rainbow X with respect to a fixed
standard coloring. Let (α1, α2) ∈ r12. Choose an arbitrary pair (β1, β2) ∈ r12. Set

Ωα1,α2
:= {γ ∈ Λ : (γ1, γ2) = (α1, α2)}

and
Ωβ1,β2 := {γ ∈ Λ : (γ1, γ2) = (β1, β2)}.

Since r12 is a K-orbit, there exists k ∈ K such that (α1, α2)k = (β1, β2). Then, k
induces a bijection between Ωα1,α2

and Ωβ1,β2
. Hence, |Ωα1,α2

| = |Ωβ1,β2
|. This

implies that the number of 4-vertex colored subgraphs of a given type with respect
to a pair (α1, α2) does not depend on the choice of the pair in r12. Thus, X satisfies
the 4-condition, as required.

To prove the sufficiency, suppose that X satisfies the 4-condition. We have to
verify that A is Desarguesian, i.e., given three lines containing a common point δ
and given points α, α′ lying on the first line, β, β′ lying on the second line, and γ, γ′

lying on the third line,

αγ ‖ α′γ′ and βγ ‖ β′γ′ ⇒ αβ ‖ α′β′.
Without loss of generality, we may assume that the seven points α, . . . , δ are pair-
wise distinct. Since δ, γ, and γ′ lie on the same line, we have

r(δ, γ) = r(δ, γ′).

By the assumption, there exist two points α′′, β′′ and f ∈ Iso(X{δ,γ,α,β},X{δ,γ′,α′′,β′′})
such that

(δ, γ, α, β)f = (δ, γ′, α′′, β′′)

4I.N. Ponomarenko and A. Rahnamai Barghi, On Amorphic C-Algebras, Journal of Mathe-
matical Sciences, 145(2007), No. 3, 4981-4988.
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and
r(γ, α) = r(γ′, α′′) and r(γ, β) = r(γ′, β′′).

In pariticular, this means that

γα ‖ γ′α′′ and γβ ‖ γ′β′′.
Taking into account that γα ‖ γ′α′ and γβ ‖ γ′β′, by axiom (AP2) in the definition
of an affine plane we have

γ′α′′ = γ′α′ and γ′β′′ = γ′β′.

The fact that X{δ,γ,α,β} and X{δ,γ′,α′′,β′′} are isomorphic as colored subgraphs yields
that

(2.7.44) r(δ, α) = r(δ, α′′), r(δ, β) = r(δ, β′′), and αβ ‖ α′′β′′.
By the first two equalities,

α′′ ∈ δα = δα′ and β′′ ∈ δβ = δβ′.

We conclude that

α′′ = δα′ ∩ γ′α′′ = δα′ ∩ γ′α′ = α′ and β′′ = δβ′ ∩ γ′β′′ = δβ′ ∩ γ′β′ = β′.

In view of the third equality in formula (2.7.44), one can see that αβ ‖ α′β′, as
required. �

2.7.61. [58,34] For a group G, denote by XG the scheme of the strongly regular
graphs XG defined by formula (2.6.11). Then

(1) Aut(XG) ∼= ((G×G) Aut(G)) Sym(3) whenever |G| ≥ 5,
(2) XG is schurian if and only if it satisfies the 4-condition,
(3) XG and XG′ are algebraically isomorphic if and only if |G| = |G′|,
(4) XG and XG′ are isomorphic if and only if G and G′ are isomorphic.

Proof. Set Ω := G×G and n := |G|.
(1) For any (g, h) belongs to the group G×G,

τg,h : Ω → Ω, (α1, α2) 7→ (gα1, α2h),

is a permutation on Ω. It is easy to see that {τg,h : (g, h) ∈ G×G} is a subgroup,
denoted by H, of Aut(XG) which is isomrophic to G×G. Morover, Aut(G) has a
natural faithful action on Ω as follows:

Ω → Ω, (α1, α2) 7→ (ασ1 , α
σ
2 ), σ ∈ Aut(G).

This action produces a subgroup, denoted by K, of Aut(XG) which is isomorphic to
Aut(G). Since obviously K normalizes H, Aut(XG) has a subgroup HK isomorphic
to (G × G) Aut(G). In addition, the following two involutionary perumtations on
Ω

ϕ1 : (α1, α2) 7→ (α−1
2 , α−1

1 ) and ϕ2 : (α1, α2) 7→ (α−1
1 , α1α2)

belong to Aut(XG). Note that 〈ϕ1, ϕ2〉 is a subgroup, denoted by L, of Aut(XG)
isomorphic to Sym(3).

Since L normalizes HK, we conclude that Aut(XG) has a subgroup HKL
isomorphic to ((G×G) Aut(G)) Sym(3).

In fact, the subgroup HKL coincides with Aut(XG) = Aut(XG). This follows
from Theorem 2.7 in [34], which tells us that

Aut((XG)f ) ∼= ((G×G) Aut(G)) Sym(3),
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where f : Ω→ Ω, (α1, α2) 7→ (α−1
1 , α2) is a bijection of Ω.

(2) As in the first part of the proof of Exercise 2.7.63, one can see that if XG is
schurian then XG satisfies the 4-condition. (When XG is schurian, it is easily seen
that Aut(G) is transitive on G#. This happens if and only if G is an elementary
abelian p-group). Conversely, suppose X satisfies the 4-condition. Then by the
proof of Theorem 3.1 in [34], G is isomorphic to an elementary abelian 2-group
or cyclic group of order 5. By Theorem 2.10 in [34], (Aut(XG),Ω2) is primitive
permutation group of rank 3. In particular, this implies that XG is schurian.

(3) By Proposition 2.6.16, XG is a strongly regular graph with parameters
(n2, 3n − 3, n, 6). Hence, if |G| = |G′|, then IA(XG) = IA(XG′). This implies that
XG and XG′ are algebraically isomorphic (statement (3) of Theorem 2.6.11). Con-
versely, if ϕ ∈ Isoalg(XG,XG′), then |G′| = |Gϕ| = |G| (statement (2) of Proposition
2.3.22).

(4) Set |G| = n. The sufficiency is straightforward, since any group isomor-
phism f ∈ Iso(G,G′) belongs to Iso(XG,XG′) ⊆ Iso(XG,XG′) (formula (2.6.3)).

To prove the necessity, let f ∈ Iso(XG,XG′). Then XG and XG′ are algebraically
isomorphic. Hence, |G′| = n (statement (3)). Set

S(XG) = {1Ω, sG, tG} and S(XG′) = {1Ω, sG′ , tG′}.
If n = 1 or 5, then G and G′ are obviously isomorphic. Otherwise,

nsG′ = nsG = 3n− 3, ntG = ntG′ = n2 − 3n+ 2.

Consequently, sfG = sG′ . Therefore, f ∈ Iso(XG,XG′). Then we are done by
Moorhouse’s theorem.5 �

2.7.62. A complete colored n-vertex graph X satisfies the t-vertex condition for
t = 3 (respectively, for t = n) if and only if the color classes of X form a coherent
configuration (respectively, a schurian coherent configuration).

Proof. Let t = 3. Assume first that the color classes of X form a coherent con-
figuration. Then the number of 3-vertex colored subgraphs X{α,β,γ} of a given type
with respect to the pair (α, β) is equal to curs, where u = r(α, β), and r = r(α, γ)
and s = r(γ, β) are fixed. Hence, the colored graph satisfies 3-vertex condition.

Conversely, let us verify that S = PX satisfies the conditions (CC1), (CC2) and
(CC3) (S is a partition because X is a complete colored graph).

Observe that the definition of colored graphs implies the condition (CC1).
Let r ∈ S and (α, β) ∈ r. Assume that (α, α) ∈ s and (β, α) ∈ u. By the

assumption, the number of 3-vertex colored subgraphs

X{α,α,β}, (α, α) ∈ s, (β, α) ∈ u
does not depend on the choice of the pair (α, β) ∈ r. This implies that r∗ ⊆ u.
Similarly, u ⊆ r∗. It follows that r∗ = u ∈ S. Thus, the condition (CC2) holds.

Let r, s, u ∈ S. For each (α, β) ∈ u, denote by c(α, β; r, s) the number of 3-
vertex colored subgraphs X{α,β,γ}, where (α, γ) ∈ r, (γ, β) ∈ s and the other colors
are obvious. By the 3-vertex condition, c(α, β; r, s) does not depend on the choice
of the pair (α, β) ∈ u. Since

c(α, β; r, s) = |αr ∩ βs∗|,

5Proposition 4.1 in: G.E. Moorhouse, Bruck Nets, Codes, and Characters of Loops, Designs,
Codes and Cryptography 1 (1991), 7-29.
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the condition (CC3) holds.
Let t = n. Then X is the only t-vertex subgraph of X. It follows that X satisfies

the n-vertex condition ⇐⇒ for any s ∈ PcX and any pairs (α, β), (α′, β) ∈ s,
there exists f ∈ Aut(X) such that (α, β)f = (α′, β′) ⇐⇒ any s ∈ PcX is an
orbit of Aut(X) ⇐⇒ PcX = Orb(Aut(X),Ω(X)2) ⇐⇒ the classes of X form
a schurian coherent configuration. �
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3.7. Exercises

In what follows, unless otherwise stated, X is a coherent configuration on Ω and
S = S(X ), F = F (X ), and E = E(X ). The notations X ′ and Ω′, S′, F ′, and E′

have the same meaning. The number m denotes a positive integer and X̂ = X̂ (m),
X = X (m), etc.

3.7.1. Let X be a fusion of an affine scheme of degree q2. Then

(1) for each s ∈ S#, ns = as(q − 1) for some integer as ≥ 1,
(2) X is primitive if and only if as ≥ 2 for all s ∈ S#.

Proof. In X , every s ∈ S# is a union of some irreflexive basis relations of the
affine scheme where each of them has valency q − 1. Statement (1) follows.

To prove statement (2), assume that there exists some s ∈ S# such that as = 1.
By formula (2.5.5), we see that

{1Ω, s}
is a parabolic. Since X has degree q2 and ns = q− 1, this parobolic is not equal to
Ω2. Thus, X is not primitve in this case.

Conversely, assume
as ≥ 2, ∀s ∈ S#.

Choose arbitrarily s ∈ S#. Set

s = t1 ∪ . . . ∪ tm,
where each ti is a basis relation of the affine scheme and m ≥ 2. Then by for-
mula (2.5.5), for each basis relation t of the affine scheme one can see that t ∈ t1t2.
Thus, in X

〈s〉 = Ω2.

By Corollary, every parabolic not equal to 1Ω is equal to Ω. We are done. �

3.7.2. A coherent configuration of a disconnected graph is either non-homogeneous
or imprimitive.

Proof. Let X be a disconnected graph and X = WL(X). Suppose that X is ho-
mogeneous, it suffices to show that X is nonprimitive. By Proposition 2.6.8, econ(X)
belongs to E. Since X is disconnected,

econ(X) 6= Ω2.

If econ(X) = 1Ω, then X = DΩ. Since we are assuming that X is homogeneous, this
is a contradiction. We conclude that X is nonprimitive. �

3.7.3. Let X be a primitive nonregular scheme. Then given s ∈ S#, there exists
a positive integer m such that sm = S, where

sm = s s · · · s︸ ︷︷ ︸
m

(complex product).

Proof.
�

3.7.4. Let X and X ′ be algebraically isomorphic coherent configurations. Then X
is primitive (respectively, imprimitive) if and only if X ′ is primitive (respectively,
imprimitive).
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Proof. If ϕ is an algebraic isomorphism from X to X ′, then it induces a bijection
from E(X ) to E(X ′) by Exercise (2.7.30). Thus,

E(X ) = {1Ω,Ω
2} ⇔ E(X ′) = {1Ω′ ,Ω

′2}.
If follows that X is primitive if and only if X ′ is primitive. �

3.7.5. [17, Theorem 4.2.1] Let X be the scheme of a distance-regular graph
of diameter d and valency at least 3. Then X is imprimitive only if s1 is a bi-
partite graph or sd is the disjoint union of cliques (here, s1 and sd are defined by
formula (2.6.6)).

Proof. Set ckij = csksisj for si, sj , sk ∈ S.

Suppose X is imprimitive. As the graph X is connected, 〈s1〉 = Ω2. Since the
set of parabolics E = {〈s〉 : s ∈ S∪} (Corollary 2.1.20), there exists i > 1 such that
〈si〉 6= Ω2. Among all such i, choose the smallest one, denoted by i. We claim that

(3.7.1) cjii = 0, ∀j < i

Otherwise, sj ⊆ s2
i . This implies that

Ω2 = 〈sj〉 ⊆ 〈si〉,
a contradiction. The claim follows. In particular, if d = 2, then i = 2. Then
formula (3.7.1) implies that any conncected component of the graph s2 is complete,
i.e., the graph s2 is the disjoint union of cliques.

Now we assume that d > 2. If i = 2, our goal is to prove that X is a bipartite
graph. To this end, it suffices to show that X does not have odd cycle (Proposition
1.6.1 in6).

We first show that there is no 3-cylce in X, i.e.,

(3.7.2) c111 = 0.

Suppose on the contrary that c111 6= 0. Since d > 2, there exists a path

γ0 − γ1 − γ2 − γ3

in X of length 3 with d(γ0, γ3) = 3. Since c111 6= 0, there exists a point

γ ∈ γ0s1 ∩ γ1s1.

Then d(γ, γ2) ≤ 2. If d(γ, γ2) = 1, then d(γ, γ3) = 2 (note that d(γ, γ3) > 1). It
follows that

γ3 ∈ γs2 ∩ γ1s2.

Since (γ, γ1) ∈ s1, we have c122 6= 0, a contradiction to formula (3.7.1). Similarly, if
d(γ, γ2) = 2, then

γ2 ∈ γs2 ∩ γ0s2,

a contradiction. Formula (3.7.2) follows.
Now suppose on the contrary that X has an odd cycle

β0 − β1 − · · · − β2m − β0

where m is a positive integer. By formula (3.7.2),

(β0, β2), (β2, β4), . . . , (β2m−2, β2m), (β2m, β1) ∈ s2.

6R. Diestel, Graph Theory( Electronic Edition), Heidelberg, New York: Springer-Verlag,
2005
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This implies that s1 ∈ sm+1
2 . Hence,

Ω2 = 〈s1〉 ⊆ 〈s2〉,
a contradiction. We are done.

Now assume i > 2. If 2 < i < d, choose a path of length d in X as follows

γ0 − γ1 − · · · − γi − γi+1 − · · · − γd,
where d(γ0, γd) = d. Since ns1 > 2, there exists δ ∈ γi+1s1 such that γi 6= δ 6= γi+2

(if d = i+ 1, we choose such δ satisfying δ 6= γd and γi+2 is a point in γds1 different
from δ). Then

d(γ0, δ) ∈ {i+ l : l = 0, 1, 2}.
Then for each l ∈ {0, 1, 2}, note that j := d(δ, γi+l) ≤ 2. For each l, by the triple

(γl, γi+l, δ)

one can see that cji,i 6= 0 (Here, notice that if d(γ0, δ) = i + 1, then d(γ1, δ) is

not equal to i + 1; otherwise c1i+1,i+1 6= 0). Since i > 2, this is a contradiction to

formula (3.7.1). Thus, we have i = d. Since for any j < d, cjdd 6= 0, we see that the
graph sd is the disjoint union of cliques. �

3.7.6. Let e be a parabolic of X with indecomposable components ei, i ∈ I,
and πe the mapping (1.1.4). Then

F (XΩ/e) = {Ω(πe(ei)) : i ∈ I}.
In particular, XΩ/e is homogeneous if and only if e is indecomposable.

Proof. By Exercise (2.7.10), for any ∆ ∈ F (X ),

e · 1∆ · e
is an indecoposable component of e. Conversely, if ei is an indecomposable compo-
nent of e, choose α and ∆ ∈ F (X ) such that

α ∈ ∆ and (α, α) ∈ ei.
In particular,

ei ∩ e · 1∆ · e 6= ∅.
Since both of them are indecoposable components of e, we deduce that

ei = e · 1∆ · e.
For any

∆̄ ∈ F (XΩ/e)

by Theorem 3.1.11, there exists ∆ ∈ F (X ) such that

1∆̄ = πe(1∆) = πe(e · 1∆ · e).
Thus,

∆̄ = Ω(πe(ei),

where ei = e · 1∆ · e is an indecoposable component of e. Since by theorem 3.1.11,

∆ 7→ ∆̄

is surjective. The proof is complete. �

3.7.7. Let e be the parabolic of X such that Ω/e = F . Then XΩ/e = DF .
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Proof. By the assumption,

e =
⋃

∆∈F
∆×∆.

For any s ∈ S, suppose
s ∈ S∆,Γ,

where ∆,Γ ∈ F . One can see that

sΩ/e = {(∆,Γ)}.
Since

S(XΩ/e) = {sΩ/e : s ∈ S},
we are done. �

3.7.8. Let X ≤ X ′ and e ∈ E. Then XΩ/e ≤ X
′
Ω/e.

Proof. Note that
e ∈ S(X )∪ ⊆ S(X ′)∪.

This implies that e ∈ E(X ′). For any sΩ/e ∈ S(XΩ/e) with s ∈ S(X ), there exist

s1, . . . , sm ∈ S(X ′) such that

s = s1 ∪ · · · ∪ sm.
Then obviously,

sΩ/e = ∪mi=1(si)Ω/e ∈ S(X ′Ω/e).
The proof is complete. �

3.7.9. Let e0, e1 ∈ E be such that e0 ⊆ e1. Then

(1) the quotient of XΩ/e0 modulo πe0(e1) is canonically isomorphic to XΩ/e1 ,
(2) for any ∆ ∈ Ω/e1, the quotient of X∆ modulo (e0)∆ is canonically iso-

morphic to the restriction of XΩ/e0 to πe0(∆).

Proof. Let Ω̄ and s̄ respectively denote Ω/e0 and πe0(s) for any s ∈ S∪. Set
S̄ := {s̄ : s ∈ S}. For each ∆′ ∈ Ω/e0, since e0 ⊆ e1 there exists a uniquely
determined ∆ ∈ Ω/e1 such that

∆′ ⊆ ∆.

For each ∆ ∈ Ω/e1, denote

(3.7.3) ∆̄ = {∆′ : ∆′ ⊆ ∆, ∆ ∈ Ω/e0}.
Thus,

ē1 =
⋃

∆∈Ω/e1

∆̄× ∆̄,

which is a parabolic of XΩ̄ (Theorem 3.1.11). For any s ∈ S, observe that

s̄Ω̄/ē1 = {(∆̄, Γ̄) : ∆̄, Γ̄ ∈ Ω̄/ē1, s̄ ∩ ∆̄× Γ̄ 6= ∅}.
Furthermore,

(∆̄, Γ̄) ∈ s̄Ω̄/ē1

if and only if there exist ∆′,Γ′ ∈ Ω/e0 such that

∆′ ⊆ ∆, Γ′ ⊆ Γ and s ∩∆′ × Γ′ 6= ∅
if and only if

s ∩∆× Γ 6= ∅
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if and only if
(∆,Γ) ∈ sΩ/e1 .

Thus, the map
s̄Ω̄/ē1 7→ sΩ/e1

establishes the required canonical isomorphism in statement (1).
To prove statement (2), note that

(e0)∆ =
⋃

∆′∈∆̄

∆′ ×∆′,

where ∆̄ is defined in (3.7.3). Let r∆ ∈ S(X∆). Then

(r∆)∆/(e0)∆
= {(∆′,Γ′) : ∆′,Γ′ ∈ ∆̄, r ∩∆′ × Γ′ 6= ∅}.

In addition,

(rΩ/e0)∆̄ = {(∆′,Γ′) : ∆′,Γ′ ∈ ∆̄, r ∩∆′ × Γ′ 6= ∅}.
Hence, the map

(r∆)∆/(e0)∆
7→ (rΩ/e0)∆̄

produces the cannocial isomorphism in statement (2). �

3.7.10. Let X be a semiregular coherent configuration, and let e be the union
of all relations in a system of distinct representative of {S∆,Γ}∆,Γ∈F given in state-

ment (3) of Exercise 2.7.13. Then

(1) e is an indecomposable parabolic of X ,
(2) given ∆ ∈ F and Γ ∈ Ω/e, we have ∆ ∩ Γ = {α∆,Γ} for some point α∆,Γ,
(3) for any ∆ ∈ F , the mapping f : Ω/e→ ∆, Γ 7→ α∆,Γ is a bijection,
(4) f ∈ Iso(XΩ/e,X∆).

Proof. Let
F = {∆i : 1 ≤ i ≤ m}.

Set
Sij := S∆i,∆j

.

By the proof of Exercise 2.7.13, if we choose

t1i ∈ S1i, 1 ≤ i ≤ m
with t11 = 1∆1

, then

{tij : tij = t∗1i · t1j , 1 ≤ i, j ≤ m}
is the system of distinct representative. Also,

e =
⋃

1≤i,j≤m

tij .

Observe that, for each i,
tii = t∗1it1i = 1∆i

⊆ e.
This implies that e is reflexive. In addition,

t∗ij = t∗1jt1i = tji ⊆ e,
which yields that e is symmetric. Since we have proved in Exercise 2.7.13 that e is
closed with respect to composition of relations, e is transitive. We conclude that e
is a parabolic of X .
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By the construction of e, it is easily seen that

e = e · 1∆1
· e,

which is an indecomposable component of e by Exercise 2.7.10. In particular, e is
indecomposable and statement (1) is proved.

For each Γ ∈ Ω/e, choose α ∈ Γ. Let 1 ≤ i ≤ m be such that α ∈ ∆i. Then

Γ = αe =
⋃

1≤l,j≤m

αtlj =

m⋃
j=1

αtij .

Then, for each ∆k ∈ F ,
Γ ∩∆k = αtik := α∆k,Γ

.

Thus, statement (2) follows.
For statement (3), since

α∆,Γ = ∆ ∩ Γ,

we deduce that f is a well-defined injection. Furthermore, for any α ∈ ∆, if we set
Γ := αe, then

Γ ∈ Ω/e and Γ ∩∆ = {α}.
It follows that f is a surjection. We are done.

To prove statement (4), fix 1 ≤ i ≤ m. For any

1 ≤ j, k ≤ m and s ∈ Sjk,
it is trivial to see that

e · s · e = e · (tij · s · tki) · e.
Denote

s′ = tij · s · tki.
Using the notation in (3.1.3),

se = s′e.

This implies that
sΩ/e = s′Ω/e.

We conclude that for each fixed i,

S(XΩ/e) = {sΩ/e : s ∈ Sii}.

Also, by statement (2), we have

Ω/e = {αie : αi ∈ ∆i}.
Moreover, for any s ∈ Sii and any αi, α

′
i ∈ ∆i,

(αie, α
′
ie) ∈ sΩ/e ⇔ s ∩ αie× α′ie 6= ∅ ⇔ (αi, α

′
i) ∈ s.

It follows that, for any s ∈ Sii
sΩ/e = {(αie, α′ie) : (αi, α

′
i) ∈ s}.

Now suppose
f : Ω/e → ∆i, αie 7→ αie ∩∆i,

which is defined as in statement (3). Then

f(αie) = αi.

Thus,

(sΩ/e)
f = {(αief , α′ief ) : (αi, α

′
i) ∈ s} = {(αi, α′i) : (αi, α

′
i) ∈ s} = s∆i

.
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The proof for statement (4 ) is complete. �

3.7.11. A scheme is schurian if and only if it is isomorphic to the quotient of a
regular scheme.

Proof. The sufficiency holds, since every regular scheme is schurian by Theorem
2.2.11 and any quotient of a schurian coherent configuration is also schurian by
Corollary 3.1.17.

To prove the necessity, assume that X is a schurian scheme. Then

X = Inv(K,Ω),

where K = Aut(X ). Since X is homogeneous, K is transitive on Ω. Without loss
of generality, we assume that

Ω = {Hk : k ∈ K}

for a subgroup H of K and K acts on Ω by right multiplication. Also, for each
s ∈ S(X ), there exists ks ∈ K such that

(3.7.4) s = Orb(K, (H,Hks)) = {(Hk,Hksk) : k ∈ K}.

Thus, by formula (2.2.4)

(3.7.5) (Hx,Hy) ∈ s ⇔ (H,Hyx−1) ∈ s ⇔ Hyx−1 ⊆ HksH.

Let

X ′ = Inv(Kright,K).

Then X ′ is a regular scheme on Γ := K and

S(X ′) = {sk : k ∈ K},

where

sk = {(α, k−1α) : α ∈ K}.
Observe that

e =
⋃
h∈H

sh

is a parabolic of X ′. And for any α ∈ K,

αe = Hα.

In addition, for Hα,Hβ ∈ Γ/e

(3.7.6) (Hα,Hβ) ∈ (sk)Γ/e ⇔ Hβ ∩ k−1Hα 6= ∅ ⇔ Hβα−1 ⊆ Hk−1H.

By (3.7.5) and (3.7.6), we deduce that the bijection

f : Ω → Γ/e, Hα 7→ Hα

satisfies

sf = (sk−1
s

)Γ/e

where s ∈ S and ks is as in(3.7.4). We are done. �

3.7.12. Let ∆ ⊆ Ω. Then

(1) WL(Inv(K), 1∆) ≤ Inv(K{∆}) for any K ≤ Sym(Ω),
(2) Aut(WL(X , 1∆)) = Aut(X ){∆}.



3.7. EXERCISES 51

Proof. By Theorem 2.6.4,

Aut(Inv(K) ∪ {1∆})) = Aut(Inv(WL(Inv(K), 1∆))).

Observe that
K{∆} ≤ Aut(Inv(K) ∪ {1∆}).

By Galois Correspondence, it follows that

Inv(K{∆}) ≥ Inv(Aut(WL(Inv(K), 1∆))) ≥WL(Inv(K), 1∆).

Statement (1) follows.
Note that

X ≤WL(X , 1∆).

Hence,
Aut(X ) ≥ Aut(WL(X , 1∆)).

This yields that
Aut(X ){∆} ≥ Aut(WL(X , 1∆)).

Now let K = Aut(X ) in statement (1). Then we obtain

WL(X , 1∆) ≤WL(Inv(K), 1∆) ≤ Inv(K{∆}).

By Galois Correspondence again, one can see that

K{∆} ≤ Aut(Inv(K{∆})) ≤ Aut(WL(X , 1∆)).

We are done. �

3.7.13. Let S be a set of binary relations on Ω, and let e be an equivalence
relation on Ω. Then WL(SΩ/e) ≤WL(S)Ω/e.

Proof. Since each s ∈ S is a union of basis relations in WL(S), sΩ/e is a union

of basis relations in WL(S)Ω/e. This implies that

WL(SΩ/e) ≤WL(S)Ω/e,

as desired. �

3.7.14. Let e be a residually thin parabolic of X . Then

(1) s · s∗ ⊆ e for any s ∈ S,
(2) Xe = WL(X , 1∆) for any ∆ ∈ Ω/e.

Proof. To prove statement (1), choose arbitrary pairs

(α, β) ∈ s and (β, γ) ∈ s∗.
It suffices to show that (α, γ) ∈ e. To this end, let

∆, Γ, and Σ ∈ Ω/e

satifying
α ∈ ∆, β ∈ Γ and γ ∈ Σ.

Then
(∆,Γ) ∈ sΩ/e and (Γ,Σ) ∈ s∗Ω/e.

By the assumption, XΩ/e is semiregular, which implies that

ns
Ω/e

= 1 = ns∗
Ω/e
.

Then,
∆ = Σ ⇒ (α, γ) ∈ ∆2 ⊆ e,
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as required.
To prove statement (2), let ∆ ∈ Ω/e and X ′ = WL(X , 1∆). Observe that

1∆ = (1Ω)∆,∆ ∈ S∪e .

This implies that

(3.7.7) X ′ ≤ Xe.

To prove the reverse inclusion, let s∆,Γ ∈ Se. Set Λ := Ω+(s). Then ∆ × Λ ∈
S(X ′)∪. Since XΩ/e is semiregular, one can see that

s∆,Γ = s ∩∆× Γ = s ∩∆× Λ ∈ S(X ′)∪.

Thus, sΓ,∆ = (s∗∆,Γ)∗ ∈ S(X ′)∪ for any sΓ,∆ ∈ Se. It follows that for any tΓ,Γ′ ∈ Se,
there exist sΓ,∆ and s′∆,Γ′ ∈ Se such that

tΓ,Γ′ = sΓ,∆s
′
∆,Γ′ ,

because XΩ/e is semiregular. It follows that tΓ,Γ′ ∈ S(X ′)∪. Hence, Xe ≤ X ′. In
view of formula (3.7.7), we are done. �

3.7.15. Let e ∈ E and ϕ ∈ Isoalg(X ,X ′). Then e is residually thin in X if and
only if e′ = ϕ(e) is residually thin in X ′.

Proof. It is obvious that

ϕ−1 ∈ Isoalg(X ′,X ) and e = ϕ−1(e′).

Thus, it suffices to show e′ is residually thin in X ′ if so is e in X . By Exercise 2.7.30,
e′ is a parabolic of X ′. By formula (3.1.10), ϕ induces an algebraic isomorphism

ϕΩ/e : SΩ/e → S′Ω′/e′ .

Since e is residually thin, XΩ/e is semiregular. It follows that S′Ω′/e′ is semiregular

(Exercise (2.7.32)). Thus, e′ is residually thin in X ′, as requried. �

3.7.16. The thin residue of a scheme X is equal to the minimal parabolic of X
containing s · s∗ for any s ∈ S.

Proof. Let

T =
⋃
s∈S

ss∗ and e = 〈T 〉.

Then we have the following claim.
Claim. For any r, s ∈ S, r∗ · s∗ · s · r ⊆ e.
Proof. For any t ∈ sr, we see that ctsr 6= 0. Thus ct

∗

r∗s∗ 6= 0 (formula (2.1.3)).
This implies that cstr∗ 6= 0 (formula (2.1.9)). Hence, s ∈ tr∗. Then,

t∗ · s · r ⊆ t∗ · t · r∗ · r ⊆ e.

Since this true for any t ∈ sr, the claim is proved. �

Let s ∈ S. Our next goal is to prove that the following claim.
Claim. s · e · s∗ ⊆ e.
Proof. By Exercise (1.4.1), it suffices to show that for any path t1 · · · · · tm

with ti or t∗i ∈ T ,

s · (t1 · · · · · tm) · s∗ ⊆ e.



3.7. EXERCISES 53

There exist s1, . . . , sm ∈ S such that ti ⊆ si · s∗i . It follows that

s · (t1 · · · · · tm) · s∗ ⊆ s · (s1 · s∗1 · · · · · sm · s∗m)s

⊆ (s · s1 · s∗1 · s∗) · (ss2s
∗
2s
∗) · · · · · (s∗sms∗ms)

⊆ e,

where the last containment follows from the first claim. �

Now let e′ be a residually thin parabolic of X , by statement (1) of Exer-
cise (3.7.14), for all s ∈ S,

s · s∗ ⊆ e′.
This implies that e ⊆ e′. To complete the proof, it suffices to show that e is a
residually thin parabolic, i.e., ns

Ω/e
= 1 for all s ∈ S. Let s ∈ S. Suppose

(∆,Γ) and (∆,Γ′) ∈ sΩ/e,

for ∆,Γ,Γ′ ∈ Ω/e. Choose α, β, α′, β′ ∈ Ω such that

(α, β) ∈ s∆×Γ and (α′, β′) ∈ s∆×Γ′ .

Since (β, α) ∈ s∗, (α, α′) ∈ e, and (α′, β′) ∈ s, one can see that

(β, β′) ∈ s∗ · e · s ⊆ e.

This implies that Γ = Γ′. We are done. �

3.7.17. [109] Let p be a prime. A scheme X is called a p-scheme if |s| is a
p-power for each s ∈ S. For such a scheme,

(1) |Ω| is a p-power,
(2) the thin radical of X is not equal to 1Ω unless |Ω| = 1,
(3) if |Ω| = p, then X is regular,
(4) any quotient of X is a p-scheme,
(5) the thin residue of X is not equal to Ω2 unless |Ω| = 1.

Proof. Since X is a shceme, 1Ω ∈ S. Thus,

|Ω| = |1Ω|

is a p-power by the assumption. Statement (1) follows.
To prove statement (2), assume that |Ω| 6= 1. For each s ∈ S, since by for-

mula (2.1.11)

|s| = ns|Ω|
is a p-power, ns is a p-power. Observe that, by formula (2.1.13)

|Ω| =
∑
s∈S

ns,

which is a p-power. As n1Ω
= 1, there exists at one s ∈ S# such that ns = 1. The

basis realtion s is contained in the thin radical of X .
To prove statement (3), note that

p = |Ω| =
∑
s∈S

ns

and each ns is a p-power. Thus, for any s ∈ S, ns = 1, i.e., X is regular, as desired.
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To prove statement (4), let e ∈ E and sΩ/e ∈ SΩ/e. Observe that (∆,Γ) ∈ sΩ/e

if and only if s∆,Γ 6= ∅. It follows that

s =
⋃

(∆,Γ)∈s
Ω/e

s∆,Γ,

is a disjoint union. However, the cardinality |s∆,Γ| does not depend on the choice

of (∆,Γ) ∈ sΩ/e (Proposition 2.1.18). Thus, |sΩ/e| is a divisor of |s|. Since |s| is a

p-power, |sΩ/e| is also a p-power. We are done. �

3.7.18. [71] Any quasiregular coherent configuration X with all non-singleton
fibers of the same prime cardinality is the direct sum of semiregular coherent con-
figurations. In particular, X is schurian and separable.

Proof. By Theorem 3.2.2,

X = �mi=1XΩi ,

where Ω1, . . . ,Ωm are homogeneuity sets of X such that

∆,Γ ∈ F and |S∆,Γ| > 1 ⇔ ∆,Γ ∈ Ωi, for some 1 ≤ i ≤ m.
To complete the proof, it suffices to prove that XΩi is semiregular for each i. In
other words, we need to show that

(3.7.8) ∆,Γ ∈ Ωi and s ∈ S∆,Γ ⇒ ns = 1.

Fix i and assume the hypothesis of statement (3.7.8) holds. Observe that if |∆| = 1,
then

|S∆,Γ| = |SΓ,∆| = 1.

Hence, Ωi = {∆} and in this case statement (3.7.8) holds. The same is true if
|Γ| = 1.

Now assume that

|∆| = |Γ| = p,

where p is a prime. By formula (2.1.5)

(3.7.9) |s| = ns|∆| = pns = |s∗| = pns∗ .

Since X is quasiregular, S∆ can be seen as a group of order p. Furthermore,

(3.7.10) S∆ × S∆,Γ → S∆,Γ, (r, s) 7→ r · s
defines an action of S∆ on S∆,Γ. We claim that there exist

1∆ 6= r ∈ S∆ and s ∈ S∆,Γ

such that

(3.7.11) r · s 6= s.

Observe that for each s ∈ S∆,Γ, by (3.7.9)

|∆× Γ| = p2 and |S∆,Γ| > 1 ⇒ ns∗ < p.

Hence, there exist α, α′ ∈ ∆ and β ∈ Γ such that

(α, β) ∈ s and (α′, β) /∈ s.
Then

r := r(α′, α) ∈ S∆ and r · s 6= s.
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It follows that the orbit O of s under the action in (3.7.10) has size p since S∆ has
order p. Then ∑

t∈O
|t| = p(pns) ≤ |∆× Γ| = p2,

where the first equality holds as each t ∈ O is such that nt = ns. Thus,

O = S∆,Γ and nt = 1, ∀ t ∈ S∆,Γ.

Hence, statement (3.7.8) follows as required. �

3.7.19. [104] A coherent configuration X is said to be quasitrivial if

Aut(X )∆ = Sym(∆) for all ∆ ∈ F,

and semitrivial if, in addition, the group Aut(X )∆∪Γ is isomorphic to both Sym(∆)
and Sym(Γ) for all ∆,Γ ∈ F . Prove that every quasitrivial coherent configuration
is the direct sum of semitrivial coherent configurations.

3.7.20. Any coherent configuration with all fibers of cardinality at most 3 is
the direct sum of the coherent configurations isomorphic to Y ⊗DmY , where Y is a
scheme of degree at most 3 and mY ≥ 1. In particular, X is schurian and separable.

3.7.21. Let X be a commutative subtensor product on Ω = Ω1 × Ω2, and let
e1 and e2 be the parabolics of X defined by formula (??). Then

(1) for each ∆ ∈ Ω/e1, the mapping τ∆ : ∆→ Ω/e2, α 7→ αe2 is a bijection,
(2) τ∆ ∈ Iso(X∆,XΩ/e2) and also (s∆)τ∆ = sΩ/e2 for all s ∈ S,

(3) if Γ ∈ Ω/e1, then τ∆τ
−1
Γ ∈ Iso(X∆,XΓ, ϕ∆,Γ) (for ϕ∆,Γ, see Example ??).

Proof. For (1), there exists α1 ∈ Ω1 such that

∆ = {(α1, α2) : α2 ∈ Ω2}.

For α = (α1, α2), one can see that

τ∆(α) = αe2 = {(β, α2) : β ∈ Ω1}.

Observe that when α runs over ∆, α2 will runs over Ω2. Thus, τ∆ is surjective. It
is also straightforward that τ∆ is injective.

�

3.7.22. Let X be a Cayley scheme over a group G. Then the following two
statements are equivalent:

(1) X = X1 ⊗ · · · ⊗ Xk for some k ≥ 1,
(2) rk(X ) = rk(X1)·. . .·rk(Xk)and G = G1×· · ·×Gk, where Gi is an X -group

such that XGi = Xi.
Moreover, if one of these statements holds, then X is normal if and only if Xi is a
normal Cayley scheme over Gi for all i.

Proof. (1)⇒ (2) Observe that

F (X ) = {G} = {∆1 × . . .×∆k : ∆i ∈ F (Xi), 1 ≤ i ≤ k}.

Hence, each ∆i = Gi and Gi is a group with

G = G1 × . . .×Gk.
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Obviously, XGi = Xi. Also,

ρ(Gi) =
⋃

si∈S(Xi)

1G1
⊗ . . .⊗ si ⊗ . . .⊗ 1Gk ,

which is a partial parabolic of X . Thus, each Gi is an X -group.
(2) ⇒ (1) For any s ∈ S, there exists X ∈ S(A) such that s = Xρ (Theorem

2.4.17).
�

3.7.23. The extension of trivial coherent configuration TΩ with respect to the
points of a set ∆ ⊆ Ω, is equal to D∆ � TΩ\∆.

Proof. Denote the extension under consideration by X . Note that in

Y := D∆ � TΩ\∆,

for any δ ∈ ∆, {δ} is a fiber of Y. Thus

X ≤ Y.

By Theorem 3.2.3, as ∆ is a homogeneuity set of X ,

X ≥ X∆ � XΩ\∆.

Since obviously

X∆ = D∆ and XΩ\∆ ≥ TΩ\∆,

we obtain

X ≥ Y.
The proof is complete. �

3.7.24. Let α ∈ Ω. Assume that for every ϕ ∈ Isoalg(X ,X ′), there exists α′ ∈ Ω′

and ϕα,α′ ∈ Isoalg(Xα ,X ′α′) extending ϕ. Then X is separable if so is Xα.

Proof. Choose an arbitary ϕ ∈ Isoalg(X ,X ′). Let ϕα,α′ ∈ Isoalg(Xα ,X ′α′)
extending ϕ. Assume that Xα is separable. Then there exists an isomorphism f
such that

f ∈ Iso(Xα,X ′α′ , ϕα,α′).
For any s ∈ S, denote s by s1 ∪ . . .∪ sm with si ∈ S(Xα). Since ϕα,α′ extending ϕ,

ϕ(s) = ϕα,α′(∪mi=1si) = ∪mi=1ϕα,α′(si) = ∪mi=1s
f
i = sf .

This implies that f ∈ Iso(X ,X ′, ϕ) and hence X is separable.
�

3.7.25. Let α ∈ Ω and

Tα = {ru,v : r ∈ S, u, v ∈ S \ S1}\,

where ru,v = r ∩ (αu× αv). Then the pair

X⊥α = (αS1′ , Tα)

with S1′ = {s ∈ S : ns > 1}, is a rainbow and

Xα = DαS1
�WL(X⊥α ).



3.7. EXERCISES 57

Proof. Observe that ∆ := αS1′ is a homogeneity set of Xα (statement (1) of
Lemma 3.3.5). Our first goal is to show that X⊥α is a rainbow.

For any β, γ ∈ αS1′ , there exist u, v ∈ S1′ and r ∈ S such that

(3.7.12) β ∈ αu, γ ∈ αv, and (β, γ) ∈ r.
This implies that (β, γ) ∈ ru,v. Hence, Tα is a partition of ∆2.

For any β ∈ ∆, suppose β ∈ αu for some u ∈ S1′ . Then (β, β) ∈ tu,u where
t ∈ S is the basis relation containing (β, β). We conclude that 1∆ ∈ T∪α . Hence,
X⊥α satisfies the condtion (CC1).

Obviously, for any ru,v ∈ Tα, (ru,v)
∗ = r∗v,u ∈ Tα. Thus, X⊥α satisfies the

condtion (CC2).
For any s ∈ S1, if αs 6= ∅ then αs = {β} and {β} is a fiber of Xα (Lemma

3.3.5). It follows that Γ := αS1 is a homogeneity set of Xα and each fiber of (Xα)Γ

is a singleton set. Thus,
(Xα)Γ = DΓ.

By statement (2) of Lemma 3.3.5,

Tα ⊆ S((Xα)∆)∪.

This yields that
WL(X⊥α ) ≤ (Xα)∆.

Thus,

(3.7.13) DΓ �WL(X⊥α ) ≤ DΓ � (Xα)∆ = Xα.
To prove the inverse inclusion, since obviously {α} is a fiber of the coherent config-
uration on the left-hand side in (3.7.13), it suffices to show that

X ≤ DΓ �WL(X⊥α ).

To this end, we claim that for each s ∈ S and any pair in s there exists a relation
of the coherent configuration on the left-hand side in (3.7.13) which is contained in
s and contains this pair.

Now let s ∈ S and (β, γ) ∈ s, if β, γ ∈ αS1′ then (β, γ) ∈ su,v for some u, v ∈ S1′

and su,v ⊆ s. If β, γ ∈ αS1, then (β, γ) ∈ s. If β ∈ αr and γ ∈ αt with r ∈ S1 and
t ∈ S1′ , then (β, γ) ∈ r∗t. Since r is thin, r∗t is a basis relation. Hence, s = r∗t.
Set Λ := Ω+(s). Then Λ = Ω+(t). It follows that

(β, γ) ∈ {β} × Λ ⊆ s.
If β ∈ αS1′ and γ ∈ αS1, the claim can be proved similarly. We are done. �

3.7.26. [65] Any primitive scheme admitting a one point extension with exactly
one non-singleton fiber, is trivial.

3.7.27. Let α ∈ Ω and ∆ a base of Xα. Then {α} ∪ ∆ is a base of X . In
particular,

b(X ) ≤ 1 + b(Xα).

If α belongs to a minimal base ∆ with rank b(X ) of X , then the equality occures.

Proof. Denote ∆ by {β, . . . , τ}. Note that

Xα,β,...,τ = (Xα)β,...,τ .

This is the trivial coherent configuration since ∆ is a base of Xα. We are done. �
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3.7.28. The class of all partly regular coherent configurations is closed with
respect to taking fissions and tensor products.

Proof. Let X1 be a partly coherent configuration on Ω1 and X ′1 be a fission
of X1. By definition of partly coherent configuration, there exists a point α1 ∈ Ω1

such that

|α1s1| ≤ 1 for all s1 ∈ S(X1).

Taking into account that for any s′1 ∈ S(X ′1) there exists s1 ∈ S(X1) such that
s′1 ⊆ s1,

|α1s
′
1| ≤ |α1s1| ≤ 1.

This yields that X ′1 is partly regular.
Suppose further that X2 is partly regular coherent configuration on Ω2. Then

there exists α2 such that |α2s2| ≤ 1 for all s2 ∈ S(X2). It follows that for any
s1 ⊗ s2 ∈ S(X1 ⊗X2), where si ∈ S(Xi), i = 1, 2,

|(α1, α2)(s1 ⊗ s2)| = |α1s1||α2s2| ≤ 1.

This implies that X1 ⊗X2 is also partly regular, as desired.
�

3.7.29. Let Ω1 and Ω2 be sets. Then the only proper fusion of the wreath
product TΩ1

o TΩ2
is the trivial scheme TΩ1×Ω2

.

Proof. Observe that

rk(TΩ1
o TΩ2

) = rk(TΩ1
) + rk(TΩ2

)− 1 = 3.

Thus, the proper fusion of the wreath product of these two trivial schemes should
have rank 2 and hence must be the trivial scheme on Ω1 × Ω2. �

3.7.30. Let X be a scheme and Y = Inv(K,∆), where ∆ is a set and K ≤
Sym(∆) is a transitive group. Then K acts as a group of isomorphisms of the
direct sum X ′ of |∆| copies of X , and X o Y ∼= (X ′)K .

Proof. Let X be a scheme on Ω. For each δ ∈ ∆, there is a bijection fδ :
Ω→ Ωδ. Set Xδ := X fδ . For any s ∈ S, set sδ := sfδ . Then

X ′ = �δ∈∆Xδ.

We then have the following bijection

f : Ω×∆ →
⊔
δ∈∆

Ωδ, (α, δ) 7→ αfδ .

To complete the proof, it suffices to show that

S(X o Y)f = S((X ′)K).

Let r ∈ S(X o Y). If r = s⊗ 1∆ where s ∈ S(X ), then

rf ={((α, δ)f , (β, δ)f ) : (α, β) ∈ s, δ ∈ ∆}

={(αfδ , βfδ) : (α, β) ∈ s, δ ∈ ∆}

=
⋃
δ∈∆

sδ.
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Observe that for each δ ∈ ∆, (X ′)K has a basis relation sKδ . Since K is transitive
on ∆,

(sδ)
K =

⋃
k∈K

sδk =
⋃
γ∈∆

sγ = rf .

Thus, rf ∈ S((X ′)K).
If r = Ω2 ⊗ t, where t ∈ S(Y)#, then t = (δ, δ′)K for some (δ, δ′) ∈ ∆2 with

δ 6= δ′. In addition,

rf ={((α, δ)f , (β, δ′)f ) : α, β ∈ Ω, (γ, γ′) ∈ t}

={(αfγ , βfγ′ ) : α, β ∈ Ω, (γ, γ′) ∈ t}

=
⋃
k∈K

Ωδk × Ωδ′k

=(Ωδ × Ωδ′)
K .

Here Ωδ×Ωδ′ is a basis relation of X ′ and hence rf ∈ S((X ′)K). We conclude that
f induces an injective map from S(X o Y) to S((X ′)K). Since obviously this map
is surjective, we are done. �

3.7.31. Let X1 = (Ω1, S1) and X2 = (Ω2, S2) be schemes and Φ a family of the
algebraic isomorphisms

ϕα ∈ Isoalg(X1,X1α), α ∈ Ω2,

where X1α is a scheme on the set Ωα = Ω1 × {α}. Define a rainbow X on the set
Ω = Ω1 × Ω2 with S(X ) = S(1) ∪ S(2), where

S(1) = {
⋃
α∈Ω2

ϕα(s1) : s1 ∈ S1} and S(2) = {
⋃

(α,β)∈s2

Ωα × Ωβ : s2 ∈ S#
2 }.

Then X is a scheme, called the wreath product of X1 by X2 with respect to the
family Φ; it is denoted by X1 oΦ X2. Moreover,

(1) the equivalence relation e with classes Ωα, α ∈ Ω2, is an indecomposable
parabolic of X ,

(2) if for each α, the algebraic isomorphism ϕα is induced by the bijection
β 7→ (β, α), β ∈ Ω1, then X = X1 o X2,

(3) Autalg(X ) is isomorphic to Autalg(X1)×Autalg(X2).

Proof. For each s1 ∈ S1 and s2 ∈ S#
2 , denote

s̃1 :=
⋃
α∈Ω2

ϕα(s1) and s̃2 :=
⋃

(α,β)∈s2

Ωα × Ωβ .

By (3) of Proposition 2.3.18, each algebraic isomorphism ϕα maps reflexive relations
to relexive ones. Thus, ϕα(1Ω1

) = 1Ωα . This implies that

1̃Ω1
= 1Ω ∈ S(X ).

To prove that X is a scheme, since it is obviously a rainbow, it suffices to prove
that condition (CC3) holds. It can be easily computed that

ct̃1r̃1s̃1 = ct1r1s1 , r1, s1, t1 ∈ S1; ct̃2r̃2s̃2 = |Ω1|ct2r2s2 , r2, s2, t2 ∈ S#
2 .

And,

c1Ω

r̃2r̃∗2
= |Ω1|nr2 , r2 ∈ S#

2 ; cs̃2s̃1s̃2 = cs̃2s̃2s̃1 = ns1 , s1 ∈ S1, s2 ∈ S#
2 .
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Other types of intersection numbers are zero.
To prove statement (1), note that e is the union of all basis relations contained

in S(1). Hence e is a parabolic. Since X is a scheme, e is indecomposable by
Proposition 2.1.24.

To prove statement (2), suppose each ϕα has the form in the assumption. Then,

s̃1 = s1 ⊗ 1Ω2
, s1 ∈ S1 and s̃2 = Ω2

1 ⊗ s2, s2 ∈ S#
2 .

Therefore, S(X ) = S(X1 o X2), as wanted.
To prove statement (3), note that there is a bijection

π : Ω/e→ Ω2, Ωα 7→ α.

Furthermore,
(XΩ/e)

π = X2.

Also, for any Ωα ∈ Ω/e,
XΩα = X1α.

Now let ψ ∈ Autalg(X ). Then ψ induces an algebraic isomorphism ψΩ/e of XΩ/e.
Obviously,

ϕ2 := πψπ−1 ∈ Autalg(X2).

Moreover, by Exercise (2.7.31), for each Ωα ∈ Ω/e,

ψ1α : XΩα → XΩα , sΩα 7→ ψ(s)Ωα

is an algebraic isomorphism. Fix α ∈ Ω2. Then,

ψ1 := ϕ−1
α ψ1αϕα ∈ Autalg(X1).

Therefore, we obtain the following group monomorphism

(3.7.14) Autalg(X )→ Autalg(X1)×Autalg(X2), ψ 7→ (ψ1, ψ2).

Conversely, let ψi ∈ Autalg(Xi), i = 1, 2. Then

ψ(s̃1) = ψ̃1(s1), s1 ∈ S1 and ψ(s̃2)) = ψ̃2(s2), s2 ∈ S#
2

defines an algebraic isomorphism ψ of X . It is straightforward to see that the
image of ψ with respect to the mapping (3.7.14) is (ψ1, ψ2). As a consequence, the
mapping (3.7.14) is a group homomorphism.

�

3.7.32. Let X be a scheme on Ω1 × Ω2, and let e be the equivalence relation
with classes Ωα = Ω1×{α}, α ∈ Ω2. Assume that e is an indecomposable parabolic
of X . Take an arbitrary α ∈ Ω2 and set

Φ = {ϕΩα,Ωβ
: β ∈ Ω2},

where ϕΩα,Ωβ
is the algebraic isomorphism defined in Example 2.3.16 . Then X is

a fission of the scheme X1 oΦ X2, where X1 = XΩα and X2 = XΩ/e.

Proof. Denote X1 oΦ X2 by X ′. For s ∈ S, if s ⊆ e, then

s1 =
⋃
β∈Ω2

(s1)Ωβ =
⋃
β∈Ω2

ϕΩα,Ωβ
(s1) ∈ S(X ′).

If s * e, then sΩα = ∅ for each α ∈ Ω2. It follows that

s ⊆
⋃

(α,β)∈s

Ωα × Ωβ ∈ S(X ′).
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We conclude that X is a fission of X ′. �

3.7.33. Let X1 and X2 be coherent configurations on Ω1 and Ω2, respectively,
and let 2 denote � or ⊗ or o; in the latter case, X1 and X2 are schemes. Then

(1) for any ϕ1 ∈ Isoalg(X1,X ′1) and ϕ2 ∈ Isoalg(X2,X ′2), there exists a unique

ϕ ∈ Isoalg(X1 2X2,X ′1 2X ′2)

such that ϕΩ1
= ϕ1 and ϕΩ2

= ϕ2,
(2) the inclusion

Autalg(X1 2X2) ≥ Autalg(X1)×Autalg(X2)

holds with equality attained if X1 and X2 are not algebraically isomor-
phic,7

(3) for any e1 ∈ E(X1),

(X1 2X2)Ω/e = (X1)Ω1/e1 2X2,

where e = e1 if 2 = �, and e = e1 ⊗ 1Ω2
otherwise.

Proof. For statement (1), since the algebraic isomorphisms ϕi, induce bijec-
tions from F (Xi) to F (X ′i ), i = 1, 2, we see that

si 7→ ϕ(si), si ∈ S(Xi) and ∆1 ×∆2 7→ ∆ϕ1

1 ×∆ϕ2

2

generates an algebraic isomorphism ϕ from X1�X2 to X ′1�X ′2 such that ϕΩi = ϕi,
i = 1, 2.

Next,

s1 ⊗ s2 7→ ϕ1(s1)⊗ ϕ2(s2), s1 ⊗ s2 ∈ S(X1 ⊗X2)

produces an algebraic isomorphism ϕ from X1 ⊗X2.
�

3.7.34. Let X1 and X2 be coherent configurations. Then

(1) b(X1 � X2) = b(X1) + b(X2),
(2) b(X1⊗X2) = b(X1)+ b(X2)−1 unless min{b(X1), b(X2)} = 0; in the latter

case, b(X1 ⊗X2) = b(X1) + b(X2),
(3) if X1 and X2 are schemes, then b(X1 o X2) = |Ω2| b(X1).

Proof. To prove statement (1), note that if ∆i is a subset of Ωi, i = 1, 2, then

(3.7.15) WL(X1 � X2, {1α : α ∈ ∆1 ∪∆2})Ωi = WL(Xi, {1α : α ∈ ∆i}).
If assume further that ∆i is a base of Xi, then the right-hand side equals DΩi .
Thus, in this case

WL(X1 � X2, {1α : α ∈ ∆1 ∪∆2}) ≥ DΩ1 �DΩ2 = DΩ1∪Ω2 .

This yields that ∆1 ∪∆2 is a base of X1 � X2. Therefore,

(3.7.16) b(X1 � X2) ≤ b(X1) + b(X2).

Now let ∆ = ∆1 ∪ ∆2 be a base for X1 � X2, where ∆i ⊆ Ωi, i = 1, 2. By
formula (3.7.15), we see that

WL(Xi, {1α : α ∈ ∆i}) = DΩi , i = 1, 2

7For 2 = o, this condition is superfluous.
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since the left-hand side is the discrete coherent configuration in this case. It follows
that ∆i is a base of Xi. Hence, the inequality of converse direction in (3.7.16) holds.

To prove statement (2), denote Ω := Ω1 × Ω2 and X := X1 ⊗ X2. For α ∈ Ω,
the first and the second coordinates of α are denoted by α1 and α2. Let

e1 = {(α, β) ∈ Ω2 : α1 = β1} and e2 = {(α, β) ∈ Ω2 : α2 = β2}.
Also, let

f1 : Ω/e1 → Ω1, {α1} × Ω2 7→ α1 and f2 : Ω/e2 → Ω2, Ω1 × {α2} 7→ α2.

Observe that e1 and e2 are parabolics of X and that

(XΩ/e1)f1 = X1 and (XΩ/e2)f2 = X2.

For (α1, α2) ∈ Ω, we claim that

(3.7.17) X(α1,α2) = (X1)α1
⊗ (X2)α2

.

On one hand, by definition, it is easily seen that the left-hand side is contained in
the right-hand side. On the other hand, observe that

((X(α1,α2))Ωi/ei)
fi = (Xi)αi , i = 1, 2.

This yields that the right-hand side of (3.7.17) is contained in the left-hand side.
Thus, formula (3.7.17) holds.

Assume first that min{b(X1), b(X2)} = 0. Without loss of generality, we assume
that b(X1) = 0. Denote b(X1 ⊗ X2) by m. For a fixed α1 ∈ Ω1, by repeated
applying formula (3.7.17), we see that β1, . . . , βm is a base of X2. if and only if
(α1, β1), (α1, β2), . . . , (α1, βm) is a base of X1 ⊗X2. Hence, in this case,

b(X1 ⊗X2) = b(X2) = b(X1) + b(X2).

Now assume that bi := b(Xi) ≥ 1. We will use induction on b1 + b2 to prove
that

(3.7.18) b := b(X ) = b1 + b2 − 1.

If b1 + b2 = 2, then neither X1 nor X2 are discrete coherent configuration. Thus,
X is not discrete and therefore b ≥ 1. Choose a base {αi} of Xi, i = 1, 2. By
formula (3.7.17), {(α1, α2)} is a base of X . Hence, b = 1 in this case and for-
mula (3.7.18) is proved.

Now assume that c := b1 + b2 > 2 and formula (3.7.18) is valid for cases where
b1 + b2 < c. Choose a point (α1, α2) ∈ Ω such that αi belongs to a minimal base of
Xi for i = 1, 2. Formula (3.7.18) together with Exercise (3.7.27) show that

b ≤ b(X(α1,α2)) + 1 = b((X1)α1
⊗ (X2)α2

) + 1.

By inductive hypothesis and Exercise (3.7.27), we have

b((X1)α1 ⊗ (X2)α2) = b((X1)α1) + b((X2)α2)− 1 = (b1 − 1) + (b2 − 1).

We deduce that b ≤ b1 + b2 − 1.
�

3.7.35. [40, Corollary 5.2] Let X be a graph with connected components Xij ,
where i = 1, . . . , a and j = 1, . . . , ai for each i. Assume that the indices are chosen
so that the graphs Xij and Xi′j′ are isomorphic if and only if i = i′. Then

WL(X) ∼=
a
�
i=1

WL(Xi1) o Tai .
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3.7.36. The exponentiation preserves the partial orders of coherent configura-
tions and permutation groups:

(1) if Y ≤ X , then Y ↑ K ≤ X ↑ K for any K,
(2) if L ≤ K, then X ↑ L ≥ X ↑ K for any X .

Proof. Assume thatK and L are permutation groups on ∆. To prove statement
(1), let t ∈ S(Y ↑ K). Then there exists

⊗
δ∈∆ sδ ∈ S(Y∆) such that each sδ ∈

S(Y) and

t = (
⊗
δ∈∆

sδ)
K .

Since Y ≤ X , each sδ ∈ S(X )∪. It follows that
⊗

δ∈∆ sδ ∈ S(X∆)∪. This implies
that t ∈ S(X ↑ K)∪. We are done.

To prove statement (2), let t ∈ S(X ↑ K). Then

t = (
⊗
δ∈∆

sδ)
K =

⋃
k∈K

⊗
δ∈∆

s
δk−1

where each sδ ∈ S(Y). Let K =
⋃m
i=1 Lki be a disjoint union of right cosets of L in

K. Then

t =

m⋃
i=1

(
⊗
δ∈∆

s
δk
−1
i

)L ∈ S(X ↑ L)∪.

We are done. �

3.7.37. Let X be the scheme associated with the Hamming graph H(d, q), where
d ≥ 1 and q ≥ 2. Then

X = Tq ↑ Sym(d) and Aut(X ) = Sym(q) ↑ Sym(d).

Proof. Let Ω = {1, . . . , q}d. From the statements about Hamming graph on
page 84, X is a symmetric scheme of degree qd and the ith basis relation is of the
form

si = {(α, β) ∈ Ω2 : |{j : αj 6= βj}| = i}, i = 0, . . . , d.

Two basis relations of Tq are as follows:

t1 = {(1, 1), · · · , (q, q)}, t2 = {(i, j)|1 ≤ i 6= j ≤ q}.

If tj1 ⊗ . . .⊗ tjd is a basis relation of (Tq)d, where the number of the factor t2 is i.
Then, it is easily seen that the algebraic fusion with respect to the action of Sym(d)
of this basis relation is si. Since any basis relation of Tq ↑ Sym(d) is established in
this way, this first equality in question follows.

�

3.7.38. Let X be a Cayley scheme over G. Assume that X is the U/L-wreath
product. Then

(1) if X ′ ≤ X , and L and U are X ′-groups, then X ′ is the U/L-wreath product,
(2) if L′ ≤ L and U ′ ≥ U are X -subgroups and L′ E G, then X is the

U ′/L′-wreath product,
(3) if H ≥ L is a normal X -subgroup of G, then XG/H is the HU/HL-wreath

product.
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Proof. To prove statement (1), let s′ ∈ S(X ′) be such that s′ * eU . Our goal
is to prove that eL ⊆ rad(s′). Since U is an X ′-group, eU ∈ S(X ′)∪. It follows that

(3.7.19) s′ ∩ eU = ∅.

By the assumption, s′ ∈ S∪. Thus, s′ =
⋃m
i=1 si for si ∈ S. In view of for-

mula (3.7.19), we conclude that each si * eU . This implies that, for each i,
eL ⊆ rad(si) since X is the U/L-wreath product. Then,

eL · s′ · eL =

m⋃
i=1

eL · si · eL =

m⋃
i=1

si = s′.

In other words, eL ⊆ rad(s′), as required.
To prove statement (2), let s ∈ S be such that s * eU ′ . It follows that s * eU

as U ≤ U ′. Hence, eL ⊆ rad(s) because X is the U/L-wreath product. It follows
that eL′ ⊆ rad(s) by the assumption that L′ ≤ L. We are done.

�

3.7.39. Let X be a Cayley scheme over a group G = L×H × V , where L, H,
and V are X -groups. Assume that X is the U/L-wreath product, where U = HL.
Then

Aut(X ) = Aut(TL o XG/L) ∩ Aut(XU o TV ).

3.7.40. [44] Let we are given

(1) primes p1, p2, p3, p4 such that {p1, p2} ∩ {p3, p4} = ∅,
(2) a positive integer d dividing GCD(p1 − 1, p2 − 1, p3 − 1, p4 − 1),
(3) an isomorphism fij ∈ Iso(Mi,Mj), (i, j) ∈ {(1, 3), (2, 3), (2, 4), (1, 4)},

where for each i, we set Mi ≤ Aut(Cpi) and |Mi| = d. Denote by Xij the cyclotomic
Cayley scheme over Cpipj that is associated with the group

Mij = {(x, y) ∈Mi ×Mj : fij(x) = y}.

Let us consider the generalized wreath product

X (d) = (X13 op3
X23) op1p2

(X14 op4
X24),

where the subscript at the sign o denotes the number |U/L| in the corresponding
U/L-wreath product: for example, X13 op3

X23 is a Cayley scheme over Cp1p2p3
that

is the U/L-wreath product with |U | = p1p3 and |L| = p1. Then

(1) if the automorphism f = f13◦f−1
23 ◦f24◦f−1

14 of the group K1 is not trivial,
then the Cayley scheme X (d) is not schurian,

(2) if, additionally, for some d′ dividing d the automorphism f is identical
on the subgroup of order d′ and the factorgroup modulo it, then the
scheme X (d′) is not separable.

3.7.41. Let X be semiregular and K = Aut(X ). Then

(3.7.20) X̂ = Inv(K̂(m)).

In particular, the m-dimensional extension of any semiregular coherent configura-
tion is also semiregular.

Proof. As X is semiregular, Xm is semiregular. Hence, as a fission of Xm

X̂ = WL(Xm, 1Diag(Ωm))
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is semiregular. In particular, X̂ is schurian (Exercise (2.7.35)). It follows that

X̂ = Inv(Aut(X̂ )) = Inv(K̂(m))

where the second equality follow from formula (3.5.4).
�

3.7.42. Let X = TΩ and K = Sym(Ω). Then

(1) S(X̂ ) = Orb(K,Ωm); in particular, equality (3.7.20) holds,

(2) ∆m = {α ∈ Ωm : |{α1, . . . , αm}| = m} is a homogeneity set of X̂ , (this
also true for all integers j with 1 ≤ j ≤ m)

(3) the equivalence relation ∼ on ∆m defined by

α ∼ β ⇔ {α1, . . . , αm} = {β1, . . . , βm}

is a partial parabolic of X̂ ,

(4) X̂Ωm/∼ is isomorphic to the scheme of the Johnson graph J(n,m).

Proof. To prove statement (1), it suffices to show that X̂ = Inv(K,Ωm). It is
easily seen that

K̂(m) = (Km)Diag(Ωm) = Diag(Km),

where Diag(Km) is the diagonal subgroup {(k, . . . , k) : k ∈ K} of Km. Thus, by
formula (3.5.3)

X̂ = ̂Inv(K)
(m)
≤ Inv(Diag(Km)) := Y.

Obviously, S(Y) = Orb(K,Ωm). On the other hand, by Exercise (2.7.22)for any
s ∈ S(Y) there exists an equivalence relation e on {1, . . . , 2m} such that

s = {(α, β) ∈ Ωm × Ωm : (αβ)i = (αβ)j ⇔ (i, j) ∈ e}
By statement (1) of Theorem 3.5.7, each

Cyl1Ω
(i, j) = {(α, β) ∈ Ωm × Ωm : αi = βj}

is a relation of S(X̂ ). It follows that

rik = Cyl1Ω
(i, j)Cyl1Ω

(k, j)∗ = {(α, β) ∈ Ωm × Ωm : αi = αk}

is a relation of S(X̂ ). Also,

tik = Cyl1Ω
(j, i)∗Cyl1Ω

(j, k) = {(α, β) ∈ Ωm × Ωm : βi = βk}

is a relation of S(X̂ ). Let ∆ be a class of e and i ∈ ∆. For any j ∈ ∆, define

uij =


Cyl1Ω

(j, i−m) ifi > m, j ≤ m
ti−m,j−m if i > m, j > m

Cyl1Ω
(i, j −m) if i < m, j > m

rij if i < m, j ≤ m.
Set u(∆) = ∩j∈∆uij . Then one can easily see that

s =
⋂

∆∈e/{1,...,2m}

u(∆).

This implies that s ∈ S(X̂ )∪. Thus, Y ≤ X̂ . Hence X̂ = Y = Orb(K,Ωm), as
required.

�
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3.7.43. Let X ′ ≥ X and Y ′ ≥ Y. Then

(1) X̂ ′ ≥ X̂ and Ŷ ′ ≥ Ŷ ,

(2) if ψ ∈ Isom(X ′,Y ′) extends ϕ ∈ Isoalg(X ,Y), then ϕ ∈ Isom(X ,Y) and ψ̂
extends ϕ̂.

Proof. To prove statement (1), it suffices to verify the first inclusion. Note
that

X̂ ′ = WL(X ′m, 1Diag(Ωm)).

It follows that Xm ≤ X̂ ′ as X ≤ X ′ and 1Diag(Ωm) ∈ S(X̂ ′)∪. Thus X̂ ′ ≥ X̂ , as

required.
To prove statement (2), assume that X and Y are respectively coherent config-

urations on Ω and ∆. Observe that

(3.7.21) Diag(Ωm)ψ̂ = Diag(∆m)

and for all s′ ∈ S(X ′m)

(3.7.22) ψ̂(s′) = ψm(s′).

Since ψ extends ϕ, formula (3.7.22) shows that for all s ∈ S(Xm)

ψ̂(s) = ϕm(s).

In view of formula (3.7.21), the restriction of ψ̂ to X̂ is the m-dimensional extension
of ϕ. We are done.

�

3.7.44. For any ∆ ∈ F∪, we have X̂∆ ≤ X̂∆m .

Proof. Since 1Diag(Ωm) ∈ S(X̂ )∪,

(3.7.23) 1Diag(∆m) = 1Diag(Ωm) ∩∆m ∈ S(X̂∆m).

In addition, for any s ∈ (X∆)m one can see that

s ∈ Xm∆m ≤ X̂∆m .

Thus, (X∆)m ≤ X̂∆m . Together with formula (3.7.23), this shows that

X̂∆ = WL((X∆)m, 1Diag(∆m)) ≤ X̂∆m .

�

3.7.45. [36, Lemma 6.2] Let s ∈ S(X̂ ). Then for any indices i, j ∈ {1, . . . , 2m}
the following two statements hold:

(1) pri,j(s) = {((α · β)i, (α · β)j)) : (α, β) ∈ s} is a basis relation of X , where
α · β = (α1, . . . , αm, β1, . . . , βm),

(2) if ϕ is an m-isomorphism from X to another coherent configuration, then

pri,j(s
ϕ̂) = pri,j(s)

ϕ.

Proof. Let Ω−(s) = Λ and Ω+(s) = Γ. If 1 ≤ i, j ≤ m, then pri,j(s) = pri,j(Λ).
If m < i, j ≤ 2m, then pri,j(s) = pri−m,j−m(Γ). In these two cases, pri,j(s) is a

basis relation of X by Theorem 3.5. 16.
Now we assume that 1 ≤ i ≤ m and m < j ≤ 2m. Define

Cyl
′

1Ω
(i, j) = {(α, β) ∈ Ω2m : (α · β)i = (α · β)j}.
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By the proof of (3.7.42), one can see that Cyl
′

1Ω
(i, j) is a relation of X̂ . Note that

pri,j(s)
η = pri,i(Λ)ηCyl

′

1Ω
(i, j) prj,j(Γ)η,

where η = ηm defined in formula (3.5.10). By Theorem 3.5.16, pri,i(Λ)η and

prj,j(Λ)η belong to S(X̂ (m)
∆ ) for ∆ = Diag(Ωm). Hence pri,j(s)

η belongs to S(X̂ (m)
∆ ).

This implies that pri,j(s) is a relation of X . Now if pri,j(s) is not a basis relation,
let t be a basis relation properly contained in pri,j(s). Then

�

3.7.46. The mapping X 7→ X is a closure operator, i.e., the following statements
hold:

(1) X ≤ X ,
(2) if X ≤ Y, then X ≤ Y,
(3) X is m-closed.

Proof. To prove statement (3), since X ≤ X (statement (1)), it suffices to

prove that X ≤ X . However,

X = (X̂ (m))η
−1

and X = (X̂ (m))η
−1

,

where η = ηm. It suffices to prove that X̂ (m) ≤ X̂ (m). Since X̂ (m) = WL(Xm, 1Diag(Ωm))

and X̂ (m) = WL(Xm, 1Diag(Ωm)), it suffices to prove that

Xm ≤ X̂ (m).

For any s1 ⊗ s2 ⊗ · · · ⊗ sm ∈ S(Xm) with each si ∈ S(X ),

s1 ⊗ s2 ⊗ · · · ⊗ sm =

m∏
i=1

1Ω ⊗ · · · ⊗ si ⊗ · · · ⊗ 1Ω

Thus, it suffices to prove that for each s ∈ S(X ) and each 1 ≤ i ≤ m,

(3.7.24) 1Ω ⊗ · · · ⊗ s⊗ · · · ⊗ 1Ω ∈ S(X̂ (m))∪.

One can see that

1Ω ⊗ · · · ⊗ s⊗ · · · ⊗ 1Ω = Cyl1Ω
(i, i) · sη · Cyl1Ω

(i, i),

where Cyl1Ω
(i, i) ∈ S(X̂ (m))∪ (Theorem 3.5.7) and sη ∈ S(X̂ (m)). Hence, for-

mula (3.7.24) follows. We are done.
�

3.7.47. For fixed sets Ω and Ω′, we define a partial order on the set of all alge-
braic isomorphisms ϕ ∈ Isoalg(X ,X ′), where X and X ′ are coherent configurations
on Ω and Ω′, respectively. Namely, if ψ ∈ Isoalg(Y,Y ′), then

ϕ ≤ ψ ⇔ X ≤ Y, X ′ ≤ Y ′, and ψ extends ϕ.

Then the mapping taking ϕ to cl(ϕ) = ϕ, is a closure operator, i.e., the following
statements hold:

(1) ϕ ≤ cl(ϕ)
(2) if ϕ ≤ ψ, then cl(ϕ) ≤ cl(ψ),
(3) cl(cl(ϕ)) = cl(ϕ).
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3.7.48. [35, Theorems 7.5 and 7.6] Let X = X1 � · · ·� Xk. Then

(1) X = X 1 � · · ·� X k,
(2) X is m-closed if and only if so are X1, . . . ,Xk,
(3) if X ′ = X ′1 � · · ·� X ′k and the algebraic isomorphism ϕ ∈ Isoalg(X ,X ′) is

induced by the algebraic isomorphisms ϕi ∈ Isoalg(Xi,X ′i ), i = 1, . . . , k,
then ϕ ∈ Isom(X ,X ′) if and only if ϕi ∈ Isom(Xi,X ′i ) for all i.

3.7.49. [42, Corollary 5.4] Let X be a 2-closed scheme and e ∈ E. Assume that
e ⊆ S1(X ). Then any class ∆ ∈ Ω/e is a fiber of the coherent closure WL(X , 1∆).

3.7.50. [42, Theorem 5.9] Let X be a 2-closed primitive scheme. For a fixed
α ∈ Ω, denote by ∆ the set of all fibers Γ ∈ F (Xα) such that the scheme (Xα)∆ is
imprimitive. Then

(1) if ∆ 6= ∅, then the union of all Γ ∈ ∆ is a base of X ;
(2) if ∆ = ∅, then any fiber of X other than {α} is a base of X .

3.7.51. [104] Let G be an abelian group and Ĝ the group of all irreducible
complex characters of G. For an S-ring A over G, define an equivalence relation ∼
on Ĝ so that

ξ ∼ η ⇔ ξ(X) = η(X) for all X ∈ S(A).

Then the partition Ŝ of the group Ĝ into the classes of ∼ satisfies the conditions
(SR1), (SR2), and (SR3) at page ??; in particular,

Â = Span Ŝ

is an S-ring over Ĝ. Moreover, rk(A) = rk(Â).

Proof. Denote the principal character of G by ê. Observe that, for χ ∈ Ĝ

χ ∼ ê ⇔ χ(X) = ê(X) = |X|, for all X ∈ S(A) ⇔ χ(G) = |G| ⇔ χ = ê.

This implies that {ê} ∈ Ŝ, i.e., the condition (SR1) holds.

For any ξ, η ∈ Ĝ and any g ∈ G, ξ−1(g) = ξ(g−1) and η−1(g) = η(g−1). Thus,

ξ ∼ η ⇔ ξ(X) = η(X), for all X ∈ S
⇔ ξ(X−1) = η(X−1), for all X ∈ S
⇔ ξ−1(X) = η−1(X), for all X ∈ S
⇔ ξ−1 ∼ η−1.

Here the second equivalence is valid as S = {X−1 : X ∈ S}. It follows that the
condition (SR2) holds.

Let X̂, Ŷ ∈ Ŝ. As elements in CĜ,

f := X̂ · Ŷ =
∑
χ∈Ĝ

aχχ.

By the first orthogonality relation of character, one can see that χ(G) = 0 for any

nonpincipal character χ ∈ Ĝ. Then aξ|G| = (ξ−1f)(G) for any ξ ∈ Ĝ. Now suppose
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ξ ∼ η. Then,

aξ|G| = (ξ−1f)(G)

= (ξ−1f)(
∑
X∈S

X)

=
∑
X∈S

ξ−1(X)f(X)

=
∑
X∈S

η−1(X)f(X)

= (η−1f)(G)

= aη|G|.

It follows that aξ = aη. Thus, f is a linear combination of {X̂ : X̂ ∈ Ŝ}. Conse-
quently the condition (SR3) holds.

�

3.7.52. In the conditions and notation of Exercise 3.7.51, given a group H ≤ G
denote by H⊥ the group of all characters ξ ∈ Ĝ such that ker(ξ) ≥ H. Then

(1) the mapping E(A)→ E(Â), H 7→ H⊥ is a lattice antiisomorphism,

(2) ÂH = ÂĜ/H⊥ for each H ∈ E(A),

(3) ÂG/H = ÂH⊥ for each H ∈ E(A).

3.7.53. [39, Sec. 2.3] In the conditions and notation of Exercise 3.7.51,

(1) A = Cyc(K,G) for K ≤ Aut(G) if and only if Â = Cyc(K, Ĝ),

(2) A = A1 ⊗ A2 if and only if Â = Â1 ⊗ Â2,

(3) A is the U/L-wreath product if and only if Â is the L⊥/U⊥-wreath prod-
uct.

3.7.54. Let X be a coherent configuration and ξ ∈ Irr(X ). Then

nξ ≤ |SuppX (ξ)|mξ,

and the equality is simultaneously attained for all irreducible characters if and only
if X is quasiregular.

3.7.55. [41, Theorem 3] There exists a constant c such that given a primitive
scheme X ,

nmin ≤ 2cmmin ,

where nmin is the minimal valency of a nonreflexive basis relation of X and mmin

is the minimal multiplicity of a nonprincipal irreducible character of X .

3.7.56. Let G = G1 ×G2 ×G3 be a group, where |G1| = |G2| = |G3|. Denote
by K the permutation group induced by the action of G by right multiplications
on the set

Ω = G/G1 ∪ G/G2 ∪ G/G3,

and set X = Inv(K,Ω). Then

(1) F (X ) = {G/G1, G/G2, G/G3},
(2) mξ = 1 and nξ = |SuppX (ξ)| for all ξ ∈ Irr(X ),
(3) the mapping ξ 7→ SuppX (ξ) induces a bijection from Irr(X ) onto the

nonempty homogeneity sets of X .
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3.7.57. [10, Theorem 3.6(ii)] Let X be a commutative scheme of degree n, and
r, s, t ∈ S. Then

ctrs =
nrns
n

∑
ξ∈Irr(X )

1

m2
ξ

ξ(r)ξ(s)ξ(t).
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4.7. Exercises

In what follows, X is a coherent configuration on Ω and S = S(X ), F = F (X ),
and E = E(X ).

4.7.1. Let G be a family of finite simple groups. Then G-configuration is the
direct sum of semiregular coherent configurations. In particular, any quasiregular
coherent configuration whose homogeneous components are the schemes of simple
groups is schurian and separable.

Proof. By formula (4.1.2), each Gij � Gi. Hence Gij = 1 or Gi as Gi is a
simple group. Let i, j, k ∈ I be such that

Gij = Gik = 1.

Since Gi/Gij ∼= Gj/Gji and Gj is a simple group, Gji = 1. Similarly Gki = 1. It
follows that

Gi ∼= Gj ∼= Gk.

Now by formula (4.1.6), Gi/GijGik ∼= Gk/GkiGkj . Thus, Gki = Gkj = 1. Hence,
Gjk = Gji = 1.

Now we can define an equivalence relation e on I as follows:

i ∼ j ⇔ Gij = 1.

Note that i ∼ j if and only if XΩi∪Ωj is regular. And i � j if and only if

XΩi∪Ωj = XΩi � XΩj .

It follows that

X = �∆∈I/eX∆,

where X∆ = X∪i∈∆Ωi
. Hence, X is the direct sum of semiregular coherent configu-

rations since each X∆ is semiregular. �

4.7.2. [64] Let G be a family of groups with distributive lattices of normal
subgroups. Then any G-configuration is schurian and separable.

4.7.3. Let X be a G-configuration. Then for any i, j ∈ I, any basis relation
r ∈ Sij , and any pair (α, β) ∈ r, there exists t ∈ Gi such that

r =
⋃
s∈Gi

αGijs × β fij(Gijst).

Proof. By Lemma 4.1.7, there exists t ∈ Gi such that

r =
⋃
s′∈Gi

(α(t−1s′)× βfij(Gijs′)).

Set s := t−1s′ and then s′ = ts. We are done. �

4.7.4. Let X be a non-semiregular Klein configuration and K ≤ Autalg(X ).
Suppose that K acts regularly on F . Then

(1) the thin residue of the algebraic fusion XK is a Klein group,
(2) if |F | is a 2-power, then Aut(XK) is a 2-group of class 2.
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Proof. To prove statement (1), let e ∈ E(X ) be such that

Ω/e = F.

Since e is K-invariant, we see that e ∈ E(XK). We need the following claim.
Claim. For any s ∈ S(XK), s · s∗ ⊆ e.
Proof. There exsist t ∈ S such that

s =
⋃
k∈K

tk.

Assume that t ∈ S∆,Γ for ∆,Γ ∈ F . Then tk ∈ S∆k,Γk for each k ∈ K. Since K

acts regularly on F , Γk 6= Γk
′

for k 6= k′ ∈ K. In this case, one can see that

tk · (tk
′
)∗ = ∅.

It follows that
s · s∗ =

⋃
k∈K

tk · (tk)∗ ⊆
⋃

∆∈F
∆k ×∆k = e,

as required. �By the claim and Exercise (3.7.16), the thin residue of XK is

contained in e. Since X is a Klein configuration, as relations in S,

∆×∆ = {s0, . . . , s3},
where {s0, . . . , s3} is a Klein four-group. It follows that as a relation in S(XK)

e = {sK0 , . . . , sK3 },
which is also a Klein four-group. Statement (1) follows.

4.7.5. Let X be a Klein configuration, ∼ the equivalence relation defined
by (??), and J and J ′ systems of distinct representatives for I/ ∼. Then

(1) there is a unique bijection J → J ′, j 7→ j′, such that j ∼ j′,
(2) given j ∈ J , the set Sjj′ consists of thin relations; fix one of them, say sj ,
(3) the mapping f : ΩJ → ΩJ′ such that fΩj = fsj for all j ∈ J , is a bijection,
(4) f ∈ Iso(XΩJ ,XΩJ′ ).

Proof. Since J and J ′ are systems of distinct representatives of the classes
of ∼, statement (1) is straightforward.

Since j ∼ j′, Gjj′ = ej . It follows that |Sjj′ | = 4. This implies that Sjj′

consists of thin relations. Statement (2) follows.
Since sj ∈ Sjj′ is thin, fΩj = fsj is a bijection from Ωj to Ωj′ . Since ΩJ

(respectively ΩJ′) is the disjoint union of Ωj with j ∈ J (respectively Ωj′ with
j′ ∈ J ′), statement (3) follows.

To prove statement (4), it suffices to show that for any j, k ∈ J ,

Sfjk = Sj′k′ .

Indeed, for any sjk ∈ Sjk,

sfjk = s∗j · sjk · sk ∈ Sj′k′ ,
since sj and sk are thin basis relation. We are done. �

4.7.6. Let G = {Gi}i∈I and S = {Gij}i,j∈I be families as in the conditions (F1)
and (F2). Assume that Gi = G is a Klein group and the groups Gij satisfy condi-
tion (??) and |Gij | = |Gji| for all i, j. Then there exists a (unique) Klein configu-
ration X such that T (X ) = (G,S,F) for a certain family F.
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Proof. Since |Gij | = |Gji| for all i, j ∈ I, there exists an automorphism

fij : Gi/Gij → Gj/Gji,

here fii = id. Obviously, for all i, j ∈ I

fijfji = fii = id .

Our next goal is to show that formula (4.1.7) holds, i.e.

(4.7.1) fik(GijGik/Gik) = GkiGkj/Gki, i, j, k ∈ I.

If i = k, then this is straightforward. If i 6= k and Gij = Gik, then Gki = Gkj by
the condition (4.1.12). The formula (4.7.1) is obvious. If i 6= k and Gij 6= Gik, then
Gkj 6= Gki by the condition (4.1.12). Then

GijGik/Gik = Gi/Gik and GkiGkj/Gki = Gk/Gki.

Then formula (4.7.1) follows easily in this case.
Finally, we need to verify that

fijk : Gi/GijGik → Gk/GkiGkj

are well-defined group isomorphisms and further that

(4.7.2) fjkifkijfijk = id, i, j, k ∈ I.

If |{i, j, k}| < 3, then it is easy to see that fijk is a well-defined group isomorphism.
And formula (4.7.2) holds in this case. Now assume that |{i, j, k}| = 3. If Gij 6= Gik
then Gi = GijGik since |Gij | ≥ 2 and |Gik| ≥ 2. In this case, formula (4.7.2) is
obvious. If Gij = Gik, then by formula (4.1.12) we have

Gki = Gkj and Gji = Gjk.

It follows that fijk = fik, fkij = fkj , and fjki = fji. In this case, formula (4.7.2)
also holds. We are done. �

4.7.7. Two cubic Klein configurations with isomorphic associated graphs are
algebraically isomorphic.

Proof. The systems of linked quotients T (X ) = (G,S,F) with F consisting of
identity isomorphisms which are constructed from these two graphs are isomorphic.

�

4.7.8. A cubic Klein configuration is a nontrivial direct sum if and only if the
associated graph is disconnected.

Proof. If the cubic Klein configuration is a nontrivial direct sum, then there
exists i, j ∈ I such that Ωi × Ωj is a basis relation. This implies that |Sij | = 1.
Thus, i � j, i.e., the associated graph is disconnected.

Conversely, if the associated graph is disconnected, then there exist i, j ∈ I
such that |Sij | = 1. By Theorem 3.2.3, the Klein configuration is a nontrivial
direct sum. �

4.7.9. Let X be a cubic Klein configuration. Assume that the graph associated
with X is acyclic. Then X is schurian.
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Proof. If the associated graph X is disconnected, by Exercise (4.7.8), the Klein
configuration is a notrivial direct sum. The statement follows by induction |I| since
the direct sum of schurian coherent configurations is schurian.

Without loss of generality, we may assume that the graph X is connected. Since
X is acyclic by the assumption, there exists a vertex in I, denoted by 1, such that
the valency of 1 in the graph X equals one. Without loss of generality, we may
assume that 2 is the unique neighbour of 1 in X. In other words,

|S12| = 2 and |S1j | = 1, j > 2.

�

4.7.10. Let X be a geometric Klein configuration associated with a complete
graph. Assume that the partial linear space G(X ) is a near-pencil, i.e., the first
linear space in Fig.??. Then X is schurian and separable.

4.7.11. Let X be a primitive scheme of degree n. Then

t(X ) < d4
√
n log ne+ 1 and s(X ) < d4

√
n log ne+ 1.

Proof. By Theorem 3.3.13, b(X ) ≤ d4
√
n log ne. Thus, by formula (4.2.1) one

can see that

t(X ) ≤ b(X ) + 1 ≤ d4
√
n log ne+ 1 and s(X ) < b(X ) + 1 ≤ d4

√
n log ne+ 1.

�

4.7.12. Let X be the scheme of a distance-regular graph X. Then

(1) X is distance-transitive if and only if t(X ) = 1.
(2) X is uniquely determined by parameters if and only if s(X ) = 1.

Proof. By Theorem 2.6.11, X is distance-transitive (respectively, uniquely de-
termined by parameters) if and only if X is schurian (respectively, separable) if and
only if t(X ) = 1 (respectively, s(X ) = 1). �

4.7.13. [36, Theorem 4.6] The following inequalities hold:

(1) s(X ) ≤ s(Xα) + 1 for all α ∈ Ω,
(2) t(X ) ≤ t(Xα) + 1 if Xα is t(Xα)-separable for some α ∈ Ω,

(3) s(X ) ≤ ms(X̂ (m)), t(X ) ≤ mt(X̂ (m)) for all m ≥ 1.

4.7.14. Let X be an imprimitive equivalenced scheme. Then t(X ) ≤ 2 and
s(X ) ≤ 2.

Proof. Let α ∈ Ω. By Theorem 3.3.8, the restriction of Xα to the set Ω \ {α}
is semiregular. This implies that for any β ∈ Ω \ {α} and any s ∈ S(Xα)

|βs| ≤ 1, for all s ∈ S(Xα).

Hence, Xα is partly regular, i.e., the extension of X with respect to 1 point is partly
regular. By Theorem 4.2.2, we are done. �

4.7.15. [33, Theorem 3.29] The coherent configurations in Theorem ?? can be
chosen homogeneous, and for the second inequality in (??) even schurian.

4.7.16. In the notation of Theorem ??, let ϕ1, ϕ2 ∈ Autalg(X ) leave any fiber

of X fixed. Assume that (ϕ1)Ωi = (ϕ2)Ωi for all i ∈ I. Then ϕ1ϕ
−1
2 is induced by

an isomorphism if and only if t(ϕ1) = t(ϕ2) (mod 2).
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4.7.17. Let a colored graph X is (Y,Z)-regular of degree d with respect to each
of the reations r1 and r2. Then X is (Y,Z)-regular of degree d with respect to r1∪r2.

Proof. By the assumpion,

ri ∩ sX(Y,Z) ⊆ sX(Y,Z, d), i = 1, 2.

This implies that

(r1 ∪ r2) ∩ sX(Y,Z) ⊆ sX(Y,Z, d),

as required. �

4.7.18. A generating set of a projective plane P is (be) a base of the coherent
configuration associated with P.

Proof. Let ∆ be a generating set of P and X be the scheme of P. Our goal is
to prove that

X ′ := WL(X , {1α : α ∈ ∆})
equals DΩ. For any two distinct points α, β where {α} and {β} are sington fibers
of X ′, then

αs5 ∩ βs5 = {αβ}.
Since both αs5 and βs5 are homogeneity sets of X ′ (Lemma 3.3.5), {αβ} is also a
homogeneity set, i.e., 1αβ ∈ S(X ′). Similarly for any two distinct lines l1 and l2
such that {l1} and {l2} are sington fibers of X ′, if {γ} = l1 ∩ l2, then

{γ} = l1s6 ∩ l2s6

is a singlton fiber of X ′. Since each point and each line in ∆ are singleton fiber of
X ′ and ∆ is a generating set of P, by the above argument one can see that for each
point and each line in Ω are singleton fiber of X ′. We are done. �

4.7.19. [36, Theorem 7.7] Let Jq(n, k) be a Grassmann graph (k ≤ n): the
vertices are k-dimensional subspaces of the (Fq)n and the edges are pairs (α, β)
with dim(α ∩ β) = k − 1. It is known that Jq(n, k) is a distance-transitive graph
of diameter d = min(k, n − k). Prove that that if X is the scheme of the graph
Jq(n, k), then t(X ) = 1 and (X ) ≤ 2 for all q, n, k.

4.7.20. The Doob graphs are pairwise nonisomorphic and can be distinguished
each from other with the help of the 4-vertex condition.

Proof. Two graphs can be distinguished each from the other with the help of
the 4-vertex condition means that for any vertices α, β, the number of isomorphism
type of 4-vertex subgraphs are distinct.

For each arc (α, β) in the graph,

t((α, β),X4) ∈ {m1, . . . ,mk},
where

t((α, β),X4) = |{X∆ : α, β ∈ ∆, |∆| = 4,X∆
∼= X4}|.

�

4.7.21. Let X be a colored graph of a coherent configuration X , and s ∈ S.
Then the relation Cyls(i, j) defined by formula (??) is of the form sX(Y,Z, d) for
suitable colored graphs X, Y, and a positive integer d.
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Proof. Let Ω(Y) = {i, j + m} and Ω(Z) = {i, j + m} be colored graphs with
D(Y) = D(Z) = {(i, j +m)} such that

cY(i, j +m) = cZ(i, j +m) = cX(s).

Set d := 1. Then, Cyls(i, j) = sX(Y,Z, d), as required. �

4.7.22. For an integer k, set Sk = {x ∈ S : nx = k}. Then for any scheme
X ′ = (Ω′, S′), every isomorphism ϕ ∈ Isoalg(X ,X ′) induces an isomorphism of the
graphs X(Sk) and X(S′k). In particular, X is saturated with respect to Sk if and
only if X ′ is saturated with respect to S′k.

Proof. Since ϕ preserves valencies (Corollary 2.3.20), we have Sϕk = S′k. For
any s ∈ S, set s′ := ϕ(s). Observe that for any x, y ∈ Sk,

s ∈ x∗y ⇔ csx∗y 6= 0 ⇔ cs
′

x′∗y′ 6= 0 ⇔ s′ ∈ x′∗y′.
It follows that

x ∼ y ⇔ cyxs = 1 for all s ∈ x∗y ⇔ cy
′

x′s′ = 1 for all s′ ∈ x′∗y′ ⇔ x′ ∼ y′.
This yields that ϕ induces an isomorphism of the graphs X(Sk) and X(S′k). �

4.7.23. Prove that statement (3) of Theorem 4.3.6 remains true if condition (4.3.10)
is replaced by a weaker one: for all x, y, z ∈ Sk such that x ∼ y ∼ z ∼ x, there
exist a, b ∈ S for which

S′xz · S′zy ⊆ Sxy
where S′xz = Sxz \ {a} and S′zy = Szy \ {b}.

Proof. Let b′ ∈ Szy \ {b}. Then by the assumption

S′xz · b′ ⊆ Sxy.
Since x ∼ y, Sxy consist of k disjiont matchings. This implies that the set on
left-hand side consists of k − 1 disjoint matchings. Observe that

Sxy · b′ ⊆ αx× αy and Sxy = S′xy ∪ {a}
Moreover αx × αy is the disjoint union of k mathchings in Sxy. Thus, a · b′ is a
matching contained in Sxy. It follows that

Sxz · b′ = Sxy.

�

4.7.24. Prove that statement (3) of Theorem 4.3.6 remains true without con-
dition (4.3.10) and with the saturation condition replaced by a weaker one: the
graph Xk is connected.

Proof. For any β, γ ∈ αSk, assume that

β ∈ αx1 and γ ∈ αxd.
Since the graph Xk is connected, there exists a path x1 ∼ x2 ∼ · · · ∼ xd in Xk.
Since xi ∼ xi+1, Sxixi+1

consists of k matchings for i = 1, . . . , d− 1. In particular,
there exists matchings ri,i+1 ∈ Sxixi+1 such that

(β, γ) ∈ r12 · · · · · rd−1,d.

This implies that the basis relation in Y := WL(αSk) containing the pair (β, γ) is
thin. Thus, each basis relation of Y is thin. We are done. �
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4.7.25. In the notation of Exercise 4.7.22, the elements r and s are linked with
respect to (x, y, z) if and only if the elements ϕ(r) and ϕ(s) are linked with respect
to (ϕ(x), ϕ(y), ϕ(z)). In particular, X is Desarguesian if and only if so is X ′.

Proof.
�

4.7.26. In the notation of Exercise 4.7.22, let x, y, z ∈ Sk and x ∼ z ∼ y.
Assume that r′ ∈ x∗z and s′ ∈ z∗x are such that any element of x∗z \ {r′} and any
element of z∗y \ {s′} are linked with respect to the triple (x, y, z). Then

(1) any two elements, one belonging to ϕ(x)∗ϕ(z) \ {ϕ(r′)} and the other be-
longing to ϕ(z)∗ϕ(y)\{ϕ(s′)}, are linked with respect to (ϕ(x), ϕ(y), ϕ(z),

(2) if α ∈ Ω and x ∼ y, then Sxz · Szy = Sxy,
(3) if α ∈ Ω and ψ is as in Lemma ??, then for any r ∈ x∗z and any s ∈ z∗y,

there exists t ∈ x∗y such that

rx,z · sz,y ⊆ tx,y and ψ(rx,z · sz,y) ⊆ ϕ(t)ϕ(x),ϕ(y).

4.7.27. [66, Lemma 4.1] Let X be a quasi-thin scheme. Then for any s ∈ S,
there exists t ∈ S such that s s∗ = {1Ω, t}.

Proof. If s is thin, then ss∗ = {1Ω}. The statement follows by setting t = 1Ω.
Then ns = 2. We may assume s is not thin. By formula (2.1.8),

(4.7.3) nsns∗ = 4 =
∑
t∈ss∗

ntc
t
ss∗

Note that 1Ω ∈ ss∗ and c1Ω
ss∗ = ns = 2. Moreover, for t ∈ ss∗ by formula (2.1.9) we

have
ntc

t
ss∗ = nsct∗s ≥ 2.

This together with formula (4.7.3) implies that either nt = 1, ctss∗ = 2 or nt =
2, ctss∗ = 1. We conclude that there exists a unique nonirreflexive basis relation t
satisfying the requirement of the statement. �

4.7.28. [88, Lemma 5.1] Let u and v be thick basis relations of a quasi-thin
scheme X . Then

(1) u⊥ = v⊥ and u⊥ ∈ S1 if and only if either Au∗Av = 2Aa + 2Ab with
a, b ∈ S1, or Au∗Av = Aa with a ∈ S2;

(2) u⊥ = v⊥ and u⊥ 6∈ S1 if and only if Au∗Av = 2Aa + Ab with a ∈ S1 and
b ∈ S2;

(3) u⊥ 6= v⊥ if and only if Au∗Av = Aa +Ab with a, b ∈ S2.

4.7.29. [88, Lemma 5.4] Assume that X is a commutative Kleinian scheme.
Then |S⊥| = 3.

4.7.30. Any cyclotomic scheme over a finite field is pseudocyclic.

Proof. Let X be a cyclotomic scheme over Fq, i.e.

X = Inv(K,F),

where K = F+oM for a subgroup M of F×. Observe that K is a Frobenius group
on the set F. This implies that X is a Frobenius scheme. The statement follows by
Theorem 4.3.37. �
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4.7.31. Let X be a scheme such that mξ does not depend on ξ ∈ Irr(X )#. Then
X is a commutative pseudocyclic scheme.

4.7.32. [87, Corollary 3.3] Let X be an equivalenced scheme. Suppose that the
group Isoalg(X ) acts transitively on S#. Then X is a pseudocyclic scheme.

4.7.33. Any cyclotomic scheme over a finite field and any 3/2-homogeneous
scheme is pseudocyclic.

4.7.34. [87, Theorem 4.3] Let q be the order of an affine plane. Then given
a divisor m of q + 1 and a partition of {1, . . . , q + 1} in m classes of cardinality
(q + 1)/m, there exists an amorphic pseudocyclic scheme of degree q2, valency
(q2 − 1)/m and rank m+ 1.

4.7.35. [87, Theorem 3.4] Let X be a commutative pseudocyclic scheme of
valency k and G a group of algebraic isomorphisms of it. Suppose that G acts
semiregularly on S#. Then the algebraic fusion XG is a commutative pseudocyclic
scheme of valency km where m = |G|.

4.7.36. Let X be a Cayley scheme over a cyclic group G. Then

(1) if Hρ ∈ E and H ≤ rad(X ), then rad(XG/H) = rad(X )/H,
(2) if Y ≤ X , E(X ) = E(Y), and rad(Y) = 1G, then rad(X ) = 1G.

Proof. To prove statement (1), let r(α, β) = Xρ for some X ∈ S(A), where α
is the identity of G, β is a generator of G, and A is the S-ring corresponding to X .
Set s := r(α, β), rad(X ) := Kρ, and G := G/H. Then,

KρXρ ⊆ Xρ ⇒ (K)ρ(X)ρ ⊆ (X)ρ ⇒ K ⊆ rad(XG/H).

Set L := rad(XG/H). Then

(L)ρ(X)ρ ⊆ (X)ρ ⇒ LρXρ ⊆ XρHρ = Xρ.

This yields that L ≤ rad(X ) = K.
�

4.7.37. Find an example of a Cayley scheme X over a cyclic group G and a
group H ≤ G such that rad(X ) = 1G, Hρ ∈ E, and rad(XG/H) 6= 1G/H .

4.7.38. [43, Theorem 6.1] Let X be a Cayley scheme over a cyclic group G.
Then X is normal if and only if the following conditions are satisfied:

(1) X is cyclotomic over G,
(2) | rad(X )| ≤ 2,
(3) if Gp is a Sylow p-subgroup of G, |Gp| = p, and Aut(X )Gp ≥ Aut(Gp),

then p = 2 or 3.

4.7.39. [43, Lemma 7.1] Any normal Cayley schemes over a cyclic group is
cyclotomic.

4.7.40. [43, Theorem 6.6] The class of normal Cayley schemes over a cyclic
group is separable with respect to the class of all Cayley schemes over a cyclic
group.

4.7.41. Let c and c′ be the output colorings of Ωm, m ≥ 1, obtained by the
m-dim WL applied to the colorings c0 and c′0. Then for any bijection f : Ωm → Ωm

which is induced by a bijection from Ω to Ω′,

c0(τ) = c′0(τf ) for all τ ∈ Ωm ⇔ c(τ) = c′(τf ) for all τ ∈ Ωm.



4.7. EXERCISES 79

Proof. Suppose that f is induced by the bijection g : Ω → Ω′. In particular,
Ω′ = {αg : α ∈ Ω}. Moreover, for any α ∈ Ω, any i ∈ {1, . . . ,m}, and any
τ := (τ1, . . . , τm),

τfi,α = (τg1 , . . . , τ
g
i−1, α

g, . . . , τgm) = (τfi,αg ).

It follows that ∑
α∈Ω

c0(τi,α) =
∑
α∈Ω

c0(τfi,α) =
∑
α′∈Ω′

c0(τfi,α′)

Since this is true for each i ∈ {1, . . . ,m},

S1(τf ) =
∑
α∈Ω

c0(τf/αg) = S1(τ).

This implies that in the m-dim WL, we can take c1 = c′1, where c1 and c′1 are
respectively the next steps of m-dim WL of c0 and c′0. Hence, the output c = c′. �

4.7.42. Let X and X ′ be two colored rainbows on Ω and Ω′, respectively. As-
sume that

|c0−1(i)| = |c′0
−1

(i)| and |c−1(i)| = |c′−1
(i)| ≤ 1

for all colors i, where c0 = c0(X ), c′0 = c0(X ′), c = cm(X ), c′ = cm(X ′), and m ≥ 2.
Then the mapping

f : Ω→ Ω′, α 7→ α′,

where α′ is the unique point of Ω′ for which c′(α′, . . . , α′) = c(α, . . . , α), is a well-
defined bijection. Moreover, f ∈ Iso(X ,X ′).

Proof. For each α ∈ Ω, let c(α, . . . , α) = i. This implies that |c−1(i)| = 1.
By the assumption and the definition of colored graph, there exists a unique point
α′ ∈ Ω′ such that

c(α, . . . , α) = i = c′(α′, . . . , α′).

Thus, f : Ω → Ω′, α 7→ α′ (with c(α) = c′(α′)) establishes an injection. By the
assumption, it is easily seen that f is surjective. Thus, f is a bijection. �

4.7.43. The property of an undirected graph to be strongly regular is expressible
in the counting logic language.

Proof.

∀x, y[D(x, y)→ D(y, x)] ∧ ∀x[¬D(x, x)]

∧ ∀x[∃kyD(x, y) ∧ ¬∃k+1yD(x, y)]

∧ ∀x, y[D(x, y)→ ∃λz[D(x, z) ∧D(y, z)] ∧ ¬∃λ+1z[D(x, z) ∧D(y, z)]]

∧ ∀x, y[¬x = y → ∃µz[D(x, z) ∧D(y, z)] ∧ ¬∃µ+1z[D(x, z) ∧D(y, z)]]

�

4.7.44. Any two strongly regular graphs with the same parameters are C2-
equivalent.

Proof. By Exercise (4.7.43) a strongly regualr graphs with parameters k, λ, µ
can be expressible by using the parameters and formulas in C2. The statement then
follows. �
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4.7.45. A partition P of Ωm is normal if and only if for any ∆ ∈ P and
1 ≤ i, j ≤ m, we have

τ, τ ′ ∈ ∆ and τi = τj ⇒ τ ′i = τ ′j .

Proof. For any L ⊆M , set ΓL := π−1
L (Diag(ΩL)). Suppose the partition P of

Ωm is normal. To the contrary we assume that there exist ∆ ∈ P, 1 ≤ i, j ≤ m,
and τ, τ ′ ∈ ∆ such that τi = τj but τ ′i 6= τ ′j . Let L = {i, j}. Then one can see that

τ ∈ ΓL and τ ′ /∈ ΓL.

This implies that ∆ ∩ ΓL 6= ∅ but ∆ * ΓL. Hence, ΓL /∈ P∪, a contradiction.
Conversely, assume that for any ∆ ∈ P and 1 ≤ i, j ≤ m, the implication holds

as in the assumption. To the contrary we assume that the partition P of Ωm is not
normal. Then there exists a subset L of M such that ΓL /∈ P∪. This yields that
there exists ∆ ∈ P such that

∆ ∩ ΓL 6= ∅ and ∆ * ΓL.

It follows that there eixsts τ, τ ′ ∈ ∆ such that

πL(τ) ∈ Diag(ΩL) and πL(τ ′) /∈ Diag(ΩL).

This yieds that τi = τj for any i, j ∈ L and there exst i, j ∈ L such that τ ′i 6= τ ′j , a
contradiction.

�

4.7.46. For any group K ≤ Sym(Ω), the partition Orb(K,Ωm) of the set Ωm

is normal, invariant, and regular.

Proof. Set P := Orb(K,Ωm). For any L ⊆M ,

π−1
L (Diag(ΩL)) = {α ∈ ΩM : αi = β, β ∈ Ω, i ∈ L}.

It is easily seen that the set on the right-hand side is K-invariant. This yields that
π−1
L (Diag(ΩL)) ∈ P∪. Hence, the partition P is normal.

For any ∆ ∈ P, there exists (α1, . . . , αm) ∈ Ωm such that

∆ = {(αk1 , . . . , αkm) : k ∈ K}.
Then for any g ∈ Sym(M),

∆g = {(αk1g , . . . , αkmg : k ∈ K} ∈ P.
It follows that the partition P is invariant.

Finally, we prove the partition P is regular. Let ∆ ∈ P, L ⊆M , and Γ ∈ πL(P).
Thus, there exists (α1, . . . , αm) ∈ ΩM and (βi1 , . . . , βin) ∈ ΩL such that

∆ = {(αk1 , . . . , αkm) : k ∈ K} and Γ = {(βki1 , . . . , β
k
in) : k ∈ K}.

Let γ = (βki1 , . . . , β
k
in

) ∈ Γ for some k ∈ K. Set γij = βkij , j = 1, . . . , n. Then

π−1
L (γ) = {γ′ ∈ ΩM : γ′ij = γij , j = 1, . . . , n}

If π−1
L (γ) ∩ ∆ = ∅, then one can see that π−1

L (τ) ∩ ∆ = ∅ for any τ ∈ Γ. If

π−1
L (γ) ∩∆ 6= ∅, then

c∆L,Γ =

�
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4.7.47. The set of basis relations of a coherent configuration on Ω forms a
normal, invariant, and regular partition of Ω2. Find an example showing that not
every such partition forms a coherent configuration.

Proof. Set M := {1, 2}. For any proper subset L of M , one can see that

πL(Diag(ΩL)) = Ω2 ∈ S∪.
And if L = M , then πL(Diag(ΩL)) = 1Ω ∈ S∪. We conclude that the partition S
is normal.

For any g ∈ Sym(M) and any s ∈ S, either sg = s or sg = s∗. In both case,
sg ∈ S. Hence, the partition S is invariant.

Finally, if L = M , then one can see that

c∆L,Γ = δ∆,Γ

where δ is the Kronecker delta function. This number does not depend on the
choice of γ ∈ Γ. Moreover, let Γ = s ∈ S. if L = {1}, then

c∆L,Γ = ns.

And if L = {2}, then
c∆L,Γ = ns∗ .

Take Ω = {1, 2, 3}. Let P = {s1, s2, s3} where

s1 = Ω2 \ 1Ω, s2 = {(1, 1)}, and s2 = {(2, 2), (3, 3)}.
From the solution of Exercise (2.7.1), we know that P is not a coherent configura-
tion. The paritition is normal as it satisfies the condition (CC1). Then partition
invariant because it satisfies the condition (CC2). Also the partition is regular.
Now M = {1, 2, 3}.

If L ⊆M and |L| = 1, then
P = {Ω2} is normal, invariant, and regular partition of Ω2. But P does not

form a coherent configuration. �

4.7.48. Let X and X ′ be rainbows, Y = WL(X ) and Y ′ = WL(X ′), and let
c and c′ be colorings of Ω2, the color classes of which are the basis relations of X
and X ′, respectively. Then exactly one of the following statements holds:

(1) there exists ϕ ∈ Isoalg(Y,Y ′) such that c(s) = c′(ϕ(s)) for all s ∈ S(Y),
(2) there is no f ∈ Iso(X ,X ′) such that c(s) = c′(sf ) for all s ∈ S(X ).

Proof. To prove the assertion, assume that statement (1) is false then we prove
that statement (2) is true. Thus, there exists f ∈ Iso(X ,X ′) such that sf = ϕ(s)
for all s ∈ S. Observe that S(X ) and S(X ′) are sets of binary relations on Ω and
Ω′, respectively. Obviously, f ∈ Iso(S(X ), S(X ′)). By formula (2.6.3), we have

f ∈ Iso(S(X ), S(X ′)) ⊆ Iso(WL(X ),WL(X ′)).
The algebraic isomorphism ϕf ∈ Iso(WL(X ),WL(X ′)) satisfies the requirement in
statement (2). We are done. �

4.7.49. Let m ≥ 2. Then the partition of Ω2 induced by π2(Pm(X )) forms a
coherent configuration on Ω.

Proof. By Exercise (4.7.51), π2(Pm(X )) is a normal, invariant, and regular
partition of Ω2. �
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4.7.50. For any m ≥ 1, the mapping X 7→WLm(X ) is a closure operator.

Proof. By the definition, it is a closed operator.
�

4.7.51. [35, Lemma 6.3] Let P be a normal, invariant, and regular partition of
Ωm, m ≥ 1. Then given k ≤ m, the partition πk(P) is also normal, invariant, and
regular.

4.7.52. Prove Theorem 4.6.20.

4.7.53. Find an example of 2-dim WL isomorphism between two coherent con-
figurations, which is not an algebraic isomorphism.

4.7.54. For every l ≤ m,

IsoWL
l (X ,X ′) ⊇ IsoWL

m (X ,X ′).
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